Do you want to publish a course? Click here

Photo-electrical properties of 2D Quantum Confined Metal Organic Chalcogenides Nanocrystal Films

134   0   0.0 ( 0 )
 Added by Lorenzo Maserati
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

2D quantum confined hybrid materials are of great interest from a solid state physics standpoint because of the rich multibody phenomena hosted, their tunability and easy synthesis allowing to create material libraries. In addition, from a technological standpoint, 2D hybrids are promising candidates for efficient, tunable, low cost materials impacting a broad range of optoelectronic devices. Different approaches and materials have therefore been investigated, with the notable example of 2D metal halide hybrid perovskites. Despite the remarkable properties of such materials, the presence of toxic elements like lead are not desirable in applications and their ionic lattices may represent a limiting factor for stability under operating conditions. Alternative, non-ionic 2D materials made of non-toxic elements are therefore desirable. In order to expand the library of possible hybrid quantum wells materials, here we consider an alternative platform based on non-toxic, self-assembled, metal-organic chalcogenides. While the optical properties have been recently explored and some unique excitonic characters highlighted, photo-generation of carriers and their transport in these lamellar inorganic/organic nanostructures, critical optoelectronic aspects, remain totally unexplored. We hereby report the first electrical investigation of the air-stable [AgSePh] 2D coordination polymer in form of nanocrystal (NC) films readily synthesized in situ and at low temperature, compatible with flexible plastic substrates. The wavelength-dependent photo-response of the NC films suggests possible use of this materials as near-UV photodetector. We therefore built a lateral photo-detector, achieving a sensitivity of 0.8 A/W at 370 nm thanks to a photoconduction mechanism, and a cutoff frequency of ~400 Hz, and validated its reliability as air-stable UV detector on flexible substrates.



rate research

Read More

Although a cubic phase of Mn$_3$Ga with an antiferromagnetic order has been theoretically predicted, it has not been experimentally verified in a bulk or film form. Here, we report the structural, magnetic, and electrical properties of antiferromagnetic cubic Mn$_3$Ga (C-Mn$_3$Ga) thin films, in comparison with ferrimagnetic tetragonal Mn$_3$Ga (T-Mn3Ga). The structural analyses reveal that C-Mn$_3$Ga is hetero-epitaxially grown on MgO substrate with the Cu$_3$Au-type cubic structure, which transforms to T-Mn$_3$Ga as the RF sputtering power increases. The magnetic and magnetotransport data show the antiferromagnetic transition at T$_N$ = 400 K for C-Mn$_3$Ga and the ferrimagnetic transition at T$_C$ = 820 K for T-Mn$_3$Ga. Furthermore, we find that the antiferromagnetic C-Mn$_3$Ga exhibits a higher electrical resistivity than the ferrimagnetic T-Mn$_3$Ga, which can be understood by spin-dependent scattering mechanism.
We report the charge storing 2D carbon nitride potassium poly(heptazine imide), K-PHI, as a direct memristive (bio)sensing platform. Memristive devices have the potential to innovate current (bio)electronic systems such as photo-electrochemical sensors by incorporating new sensing capabilities including non-invasive, wireless remote and time-delayed (memory) readout. We demonstrate a direct photomemristive sensing platform that capitalizes on K PHIs visible light bandgap, large oxidation potential and intrinsic optoionic light energy storage properties. Our system simultaneously enables analyte concentration information storage as well as potentiometric, impedimetric and coulo-metric readouts on the same material, with no additional reagents required. Utilizing the light-induced charge storage function of K-PHI, we demonstrate analyte sensing via charge accumulation and present various methods to write/erase this information from the material. Additionally, fully wireless colorimetric and fluorometric detection of the charged state of K-PHI is demonstrated and could facilitate its use as particle-based in-situ sensing probe. The various readout options of the K PHIs response enable us to adapt the sensitivities and dynamic ranges without modifying the sensor. We demonstrate these features using glucose as an example analyte over a wide range of concentrations (50 $mu$M to 50 mM). Moreover, due to the strong oxidative power of K-PHI, this sensing platform is able to detect a large variety of organic or biologically relevant analytes. Since PHI is easily synthesized, based on earth abundant precursors, biocompatible, chemically robust and responsive to visible light, we anticipate that the sensing platform presented herein opens up novel memristive and neuromorphic functions.
Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10x larger photocurrent is extracted at the EG/MoS2 interface when compared to metal (Ti/Au) /MoS2 interface. This is supported by semi-local density-functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be ~2x lower than Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle resolved photoemission spectroscopy with spatial resolution selected to be ~300 nm (nano-ARPES) and DFT calculations. A bending of ~500 meV over a length scale of ~2-3 micrometer in the valence band maximum of MoS2 is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.
Two-dimensional (2D) materials family with its many members and different properties has recently drawn great attention. Thanks to their atomic thickness and smooth surface, 2D materials can be constructed into heterostructures or homostructures in the fashion of out-of-plane perpendicular stacking or in-plane lateral stitching, resulting in unexpected physical and chemical properties and applications in many areas. In particular, 2D metal-semiconductor heterostructures or homostructures (MSHSs) which integrate 2D metals and 2D semiconductors, have shown great promise in future integrated electronics and energy-related applications. In this review, MSHSs with different structures and dimensionalities are first introduced, followed by several ways to prepare them. Their applications in electronics and optoelectronics, energy storage and conversion, and their use as platforms to exploit new physics are then discussed. Finally, we give our perspectives about the challenges and future research directions in this emerging field.
Phase change memory (PCM) is an emerging data storage technology, however its programming is thermal in nature and typically not energy-efficient. Here we reduce the switching power of PCM through the combined approaches of filamentary contacts and thermal confinement. The filamentary contact is formed through an oxidized TiN layer on the bottom electrode, and thermal confinement is achieved using a monolayer semiconductor interface, three-atom thick MoS2. The former reduces the switching volume of the phase change material and yields a 70% reduction in reset current versus typical 150 nm diameter mushroom cells. The enhanced thermal confinement achieved with the ultra-thin (~6 {AA}) MoS2 yields an additional 30% reduction in switching current and power. We also use detailed simulations to show that further tailoring the electrical and thermal interfaces of such PCM cells toward their fundamental limits could lead up to a six-fold benefit in power efficiency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا