Do you want to publish a course? Click here

Observation of transient and asymptotic driven structural states of tungsten exposed to irradiation

79   0   0.0 ( 0 )
 Added by Felix Hofmann
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Combining spatially resolved X-ray Laue diffraction with atomic-scale simulations, we observe how ion-irradiated tungsten undergoes a series of non-linear structural transformations with increasing irradiation exposure. Nanoscale defect-induced deformations accumulating above 0.02 displacements per atom (dpa) lead to highly fluctuating strains at ~0.1 dpa, collapsing into a driven quasi-steady structural state above ~1 dpa. The driven asymptotic state is characterized by finely dispersed vacancy defects coexisting with an extended dislocation network, and exhibits positive volumetric swelling due to the creation of new crystallographic planes through self-interstitial coalescence, but negative lattice strain.



rate research

Read More

Deuterium(D) retention behavior in tungsten(W) exposed to deuterium plasma and gas was studied by means of thermal desorption spectroscopy (TDS): deuterium plasma exposure in which W was exposed to D plamsa with 35 eV/D at 393 K to the fluence of 3.8E24 D/m2; D2 gas charging in which W was exposed to D2 gas of 500 kPa at 773 K for 4 hours. TDS shows that the total D retention in plasma exposure W is 1.00E22 D/m2, one order of magnitude higher than that of gas charging W; however, the D2 desorption peak of gas charging W is 952 K, much higher than 691 K of plasma exposure W. The detrapping energies of deuterium were determined experimentally from the measured peak temperatures at different heating rates and were found to be 2.17 eV for gas charging W and 1.04 eV for plasma exposure W, respectively.
The low energy structures of irradiation-induced defects have been studied in detail, as these determine the available modes by which a defect can diffuse or relax. As a result, there are many studies concerning the relative energies of possible defect structures, and empirical potentials are commonly fitted to or evaluated with respect to these energies. But recently [Dudarev et al Nuclear Fusion 2018], we have shown how to determine the stresses, strains and swelling of reactor components under irradiation from the elastic properties of ensembles of irradiation-induced defects. These elastic properties have received comparatively little attention. Here we evaluate relaxation volumes of irradiation-induced defects in tungsten computed with empirical potentials, and compare to density functional theory results where available. Different empirical potentials give different results, but some potential-independent trends in relaxation volumes can be identified. We show that the relaxation volume of small defects can be predicted to within 10% from their point-defect count. For larger defects we provide empirical fits for the relaxation volume of as a function of size. We demonstrate that the relaxation volume associated with a single primary-damage cascade can be estimated from the primary knock-on atom (PKA) energy. We conclude that while annihilation of vacancy- and interstitial- character defects will invariably reduce the total relaxation volume of the cascade debris, empirical potentials disagree whether coalescence of defects will reduce or increase the total relaxation volume.
We describe the development of a new object kinetic Monte Carlo code where the elementary defect objects are off-lattice atomistic configurations. Atomic-level transitions are used to transform and translate objects, to split objects and to merge them together. This gradually constructs a database of atomic configurations -- a set of relevant defect objects and their possible events generated on-the-fly. Elastic interactions are handled within objects with empirical potentials at short distances, and between spatially distinct objects using the dipole tensor formalism. The model is shown to evolve mobile interstitial clusters in tungsten faster than an equivalent molecular dynamics simulation, even at elevated temperatures. We apply the model to the evolution of complex defects generated using molecular dynamics simulations of primary radiation damage in tungsten. We show that we can evolve defect structures formed in cascade simulations to experimentally observable timescales of seconds while retaining atomistic detail. We conclude that the first few nanoseconds of simulation following cascade initiation would be better performed using molecular dynamics, as this will capture some of the near-temperature-independent evolution of small highly-mobile interstitial clusters. We also conclude that, for the 20keV PKA cascades annealing simulations considered here, internal relaxations of sessile objects difficult to capture using conventional object KMC with idealised object geometries establish the conditions for long timescale evolution.
122 - F. Porrati , R. Sachser , M. Huth 2009
W-based granular metals have been prepared by electron beam induced deposition from the tungsten-hexacarbonyl W(CO)6 precursor. In situ electrical conductivity measurements have been performed to monitor the growth process and to investigate the behavior of the deposit under electron beam post irradiation and by exposure to air. During the first part of the growth process, the electrical conductivity grows non-linearly, independent of the electron beam parameters. This behavior is interpreted as the result of the increase of the W-particles diameter. Once the growth process is terminated, the electrical conductivity decreases with the logarithm of time, sigma ln(t). Temperature-dependent conductivity measurements of the deposits reveal that the electrical transport takes place by means of electron tunneling either between W-metal grains or between grains and trap sites in the matrix. After venting the electron microscope the electrical conductivity of the deposits shows a degradation behavior, which depends on the composition. Electron post-irradiation increases the electrical conductivity of the deposits.
Controlled defect creation is a prerequisite for the detailed study of disorder effects in materials. Here, we irradiate a graphene/Ir(111)-interface with low-energy Ar+ to study the induced structural changes. Combining computer simulations and scanning-probe microscopy, we show that the resulting disorder manifests mainly in the forms of intercalated metal adatoms and vacancy-type defects in graphene. One prominent feature at higher irradiation energies (from 1 keV up) is the formation of line-like depressions, which consist of sequential graphene defects created by the ion channeling within the interface -- much like a stone skipping on water. Lower energies result in simpler defects, down to 100 eV where more than one defect in every three is a graphene single vacancy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا