Do you want to publish a course? Click here

Coupling of Light and Mechanics in a Photonic Crystal Waveguide

179   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English
 Authors J.-B. Beguin




Ask ChatGPT about the research

Observations of thermally driven transverse vibration of a photonic crystal waveguide (PCW) are reported. The PCW consists of two parallel nanobeams with a 240 nm vacuum gap between the beams. Models are developed and validated for the transduction of beam motion to phase and amplitude modulation of a weak optical probe propagating in a guided mode (GM) of the PCW for probe frequencies far from and near to the dielectric band edge. Since our PCW has been designed for near-field atom trapping, this research provides a foundation for evaluating possible deleterious effects of thermal motion on optical atomic traps near the surfaces of PCWs. Longer term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the GMs of the PCW, thereby enabling opto-mechanics at the quantum level with atoms, photons, and phonons. The experiments and models reported here provide a basis for assessing such goals, including sensing mechanical motion at the Standard Quantum Limit (SQL).



rate research

Read More

Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
Local control of the generation and interaction of indistinguishable single photons is a key requirement for photonic quantum networks. Waveguide-based architectures, in which embedded quantum emitters act as both highly coherent single photon sources and as nonlinear elements to mediate photon-photon interactions, offer a scalable route to such networks. However, local electrical control of a quantum optical nonlinearity has yet to be demonstrated in a waveguide geometry. Here, we demonstrate local electrical tuning and switching of single photon generation and nonlinear interaction by embedding a quantum dot in a nano-photonic waveguide with enhanced light-matter interaction. A power-dependent transmission extinction as large as 40$pm$2% and clear, voltage-controlled bunching in the photon statistics of the transmitted light demonstrate the single photon character of the nonlinearity. The deterministic nature of the nonlinearity is particularly attractive for the future realization of photonic gates for scalable nano-photonic waveguide-based quantum information processing.
252 - K. H. Madsen , S. Ates , J. Liu 2014
We demonstrate a single-photon collection efficiency of $(44.3pm2.1)%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4pm5)%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.
Solid-state quantum sensors are attracting wide interest because of their exceptional sensitivity at room temperature. In particular, the spin properties of individual nitrogen vacancy (NV) color centers in diamond make it an outstanding nanoscale sensor of magnetic fields, electric fields, and temperature, under ambient conditions. Recent work on ensemble NV-based magnetometers, inertial sensors, and clocks have employed $N$ unentangled color centers to realize a factor of up to $sqrt{N}$ improvement in sensitivity. However, to realize fully this signal enhancement, new techniques are required to excite efficiently and to collect fluorescence from large NV ensembles. Here, we introduce a light-trapping diamond waveguide (LTDW) geometry that enables both high fluorescence collection ($sim20%$) and efficient pump absorption achieving an effective path length exceeding $1$ meter in a millimeter-sized device. The LTDW enables in excess of $2%$ conversion efficiency of pump photons into optically detected magnetic resonance (ODMR) fluorescence, a textit{three orders of magnitude} improvement over previous single-pass geometries. This dramatic enhancement of ODMR signal enables broadband measurements of magnetic field and temperature at less than $1$ Hz, a frequency range inaccessible by dynamical decoupling techniques. We demonstrate $sim 1~mbox{nT}/sqrt{mbox{Hz}}$ magnetic field sensitivity for $0.1$ Hz to $10$ Hz and a thermal sensitivity of $sim 400 ~mumbox{K}/sqrt{mbox{Hz}}$ and estimate a spin projection limit at $sim 0.36$ fT/$sqrt{mbox{Hz}}$ and $sim 139~mbox{pK}/sqrt{mbox{Hz}}$, respectively.
We present a graphene photodetector for telecom applications based on a silicon photonic crystal defect waveguide. The photonic structure is used to confine the propagating light in a narrow region in the graphene layer to enhance light-matter interaction. Additionally, it is utilized as split-gate electrode to create a pn-junction in the vicinity of the optical absorption region. The photonic crystal defect waveguide allows for optimal photo-thermoelectric conversion of the occurring temperature profile in graphene into a photovoltage due to additional silicon slabs on both sides of the waveguide, enhancing the device response as compared to a conventional slot waveguide design. A photoresponsivity of 4.7 V/W and a (setup-limited) electrical bandwidth of 18 GHz are achieved. Under a moderate bias of 0.4 V we obtain a photoconductive responsivity of 0.17 A/W.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا