Do you want to publish a course? Click here

Dispersion relations and spectra of periodically perforated structures

80   0   0.0 ( 0 )
 Added by Peter Kuchment
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We establish absolute continuity of the spectrum of a periodic Schrodiner operator in R^n with periodic perforations. We also prove analytic dependece of the dispersion relation on the shape of the perforation.



rate research

Read More

The main motivation of this article is to derive sufficient conditions for dynamical stability of periodically driven quantum systems described by a Hamiltonian H(t), i.e., conditions under which it holds sup_{t in R} | (psi(t),H(t) psi(t)) |<infty where psi(t) denotes a trajectory at time t of the quantum system under consideration. We start from an analysis of the domain of the quasi-energy operator. Next we show, under certain assumptions, that if the spectrum of the monodromy operator U(T,0) is pure point then there exists a dense subspace of initial conditions for which the mean value of energy is uniformly bounded in the course of time. Further we show that if the propagator admits a differentiable Floquet decomposition then || H(t) psi(t) || is bounded in time for any initial condition psi(0), and one employs the quantum KAM algorithm to prove the existence of this type of decomposition for a fairly large class of H(t). In addition, we derive bounds uniform in time on transition probabilities between different energy levels, and we also propose an extension of this approach to the case of a higher order of differentiability of the Floquet decomposition. The procedure is demonstrated on a solvable example of the periodically time-dependent harmonic oscillator.
We establish convergence of spectra of Neumann Laplacian in a thin neighborhood of a branching 2D structure in 3D to the spectrum of an appropriately defined operator on the structure itself. This operator is a 2D analog of the well known by now quantum graphs. As in the latter case, such considerations are triggered by various physics and engineering applications.
This article deals with the spectra of Laplacians of weighted graphs. In this context, two objects are of fundamental importance for the dynamics of complex networks: the second eigenvalue of such a spectrum (called algebraic connectivity) and its associated eigenvector, the so-called Fiedler vector. Here we prove that, given a Laplacian matrix, it is possible to perturb the weights of the existing edges in the underlying graph in order to obtain simple eigenvalues and a Fiedler vector composed of only non-zero entries. These structural genericity properties with the constraint of not adding edges in the underlying graph are stronger than the classical ones, for which arbitrary structural perturbations are allowed. These results open the opportunity to understand the impact of structural changes on the dynamics of complex systems.
We consider a family of periodic tight-binding models (combinatorial graphs) that have the minimal number of links between copies of the fundamental domain. For this family we establish a local condition of second derivative type under which the critical points of the dispersion relation can be recognized as global maxima or minima. Under the additional assumption of time-reversal symmetry, we show that any local extremum of a dispersion band is in fact its global extremum if the dimension of the periodicity group is three or less, or (in any dimension) if the critical point in question is a symmetry point of the Floquet--Bloch family with respect to complex conjugation. We demonstrate that our results are nearly optimal with a number of examples.
We study the spectral and scattering theory of light transmission in a system consisting of two asymptotically periodic waveguides, also known as one-dimensional photonic crystals, coupled by a junction. Using analyticity techniques and commutator methods in a two-Hilbert spaces setting, we determine the nature of the spectrum and prove the existence and completeness of the wave operators of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا