We study the spectral and scattering theory of light transmission in a system consisting of two asymptotically periodic waveguides, also known as one-dimensional photonic crystals, coupled by a junction. Using analyticity techniques and commutator methods in a two-Hilbert spaces setting, we determine the nature of the spectrum and prove the existence and completeness of the wave operators of the system.
Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of [Breuer-Ryckman-Simon]. These developments parallel those recently obtained for Jacobi matrices.
We study the spectrum and dynamics of a one-dimensional discrete Dirac operator in a random potential obtained by damping an i.i.d. environment with an envelope of type $n^{-alpha}$ for $alpha>0$. We recover all the spectral regimes previously obtained for the analogue Anderson model in a random decaying potential, namely: absolutely continuous spectrum in the super-critical region $alpha>frac12$; a transition from pure point to singular continuous spectrum in the critical region $alpha=frac12$; and pure point spectrum in the sub-critical region $alpha<frac12$. From the dynamical point of view, delocalization in the super-critical region follows from the RAGE theorem. In the critical region, we exhibit a simple argument based on lower bounds on eigenfunctions showing that no dynamical localization can occur even in the presence of point spectrum. Finally, we show dynamical localization in the sub-critical region by means of the fractional moments method and provide control on the eigenfunctions.
This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic structure with time-reversal symmetry, the associated Zak phase (or Berry phase) may not be quantized. We investigate the existence of an interface mode which is induced by a Dirac point upon perturbation. Specifically, we establish conditions on the perturbation which guarantee the opening of a band gap around the Dirac point and the existence of an interface mode. For a periodic photonic structure with both time-reversal and inversion symmetry, the Zak phase is quantized, taking only two values $0, pi$. We show that the Zak phase is determined by the parity (even or odd) of the Bloch modes at the band edges. For a photonic structure consisting of two semi-infinite systems on the two sides of an interface with distinct topological indices, we show the existence of an interface mode inside the common gap. The stability of the mode under perturbations is also investigated. Finally, we study resonances for finite topological structures. Our results are based on the transfer matrix method and the oscillation theory for Sturm-Liouville operators. The methods and results can be extended to general topological Sturm-Liouville systems in one dimension.
We describe the spectral theory of the adjacency operator of a graph which is isomorphic to homogeneous trees at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on an homogeneous tree. We developp this scattering theory using the classical recipes for Schrodinger operators in Euclidian spaces.
We consider a one-dimensional continuum Anderson model where the potential decays in average like $|x|^{-alpha}$, $alpha>0$. We show dynamical localization for $0<alpha<frac12$ and provide control on the decay of the eigenfunctions.
Giuseppe De Nittis
,Massimo Moscolari
,Serge Richard
.
(2019)
.
"Spectral and scattering theory of one-dimensional coupled photonic crystals"
.
Giuseppe De Nittis
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا