No Arabic abstract
Through recent advancements in speech technology and introduction of smart devices, such as Amazon Alexa and Google Home, increasing number of users are interacting with applications through voice. E-commerce companies typically display short product titles on their webpages, either human-curated or algorithmically generated, when brevity is required, but these titles are dissimilar from natural spoken language. For example, Lucky Charms Gluten Free Break-fast Cereal, 20.5 oz a box Lucky Charms Gluten Free is acceptable to display on a webpage, but a 20.5 ounce box of lucky charms gluten free cereal is easier to comprehend over a conversational system. As compared to display devices, where images and detailed product information can be presented to users, short titles for products are necessary when interfacing with voice assistants. We propose a sequence-to-sequence approach using BERT to generate short, natural, spoken language titles from input web titles. Our extensive experiments on a real-world industry dataset and human evaluation of model outputs, demonstrate that BERT summarization outperforms comparable baseline models.
In this paper, we formulate a more realistic and difficult problem setup for the intent detection task in natural language understanding, namely Generalized Few-Shot Intent Detection (GFSID). GFSID aims to discriminate a joint label space consisting of both existing intents which have enough labeled data and novel intents which only have a few examples for each class. To approach this problem, we propose a novel model, Conditional Text Generation with BERT (CG-BERT). CG-BERT effectively leverages a large pre-trained language model to generate text conditioned on the intent label. By modeling the utterance distribution with variational inference, CG-BERT can generate diverse utterances for the novel intents even with only a few utterances available. Experimental results show that CG-BERT achieves state-of-the-art performance on the GFSID task with 1-shot and 5-shot settings on two real-world datasets.
We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
Word embeddings (e.g., word2vec) have been applied successfully to eCommerce products through~textit{prod2vec}. Inspired by the recent performance improvements on several NLP tasks brought by contextualized embeddings, we propose to transfer BERT-like architectures to eCommerce: our model -- ~textit{Prod2BERT} -- is trained to generate representations of products through masked session modeling. Through extensive experiments over multiple shops, different tasks, and a range of design choices, we systematically compare the accuracy of~textit{Prod2BERT} and~textit{prod2vec} embeddings: while~textit{Prod2BERT} is found to be superior in several scenarios, we highlight the importance of resources and hyperparameters in the best performing models. Finally, we provide guidelines to practitioners for training embeddings under a variety of computational and data constraints.
It is a challenging and practical research problem to obtain effective compression of lengthy product titles for E-commerce. This is particularly important as more and more users browse mobile E-commerce apps and more merchants make the original product titles redundant and lengthy for Search Engine Optimization. Traditional text summarization approaches often require a large amount of preprocessing costs and do not capture the important issue of conversion rate in E-commerce. This paper proposes a novel multi-task learning approach for improving product title compression with user search log data. In particular, a pointer network-based sequence-to-sequence approach is utilized for title compression with an attentive mechanism as an extractive method and an attentive encoder-decoder approach is utilized for generating user search queries. The encoding parameters (i.e., semantic embedding of original titles) are shared among the two tasks and the attention distributions are jointly optimized. An extensive set of experiments with both human annotated data and online deployment demonstrate the advantage of the proposed research for both compression qualities and online business values.
This paper investigates a new task named Conversational Question Generation (CQG) which is to generate a question based on a passage and a conversation history (i.e., previous turns of question-answer pairs). CQG is a crucial task for developing intelligent agents that can drive question-answering style conversations or test user understanding of a given passage. Towards that end, we propose a new approach named Reinforced Dynamic Reasoning (ReDR) network, which is based on the general encoder-decoder framework but incorporates a reasoning procedure in a dynamic manner to better understand what has been asked and what to ask next about the passage. To encourage producing meaningful questions, we leverage a popular question answering (QA) model to provide feedback and fine-tune the question generator using a reinforcement learning mechanism. Empirical results on the recently released CoQA dataset demonstrate the effectiveness of our method in comparison with various baselines and model variants. Moreover, to show the applicability of our method, we also apply it to create multi-turn question-answering conversations for passages in SQuAD.