Do you want to publish a course? Click here

Joint Radio Resource Allocation and Cooperative Caching in PD-NOMA-Based HetNets

97   0   0.0 ( 0 )
 Added by Abulfazl Zakeri
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel joint resource allocation and cooperative caching scheme for power-domain non-orthogonal multiple access (PD-NOMA)-based heterogeneous networks (HetNets). In our scheme, the requested content is fetched directly from the edge if it is cached in the storage of one of the base stations (BSs), and otherwise is fetched via the backhaul. Our scheme consists of two phases: 1. Caching phase where the contents are saved in the storage of the BSs, and 2. Delivery phase where the requested contents are delivered to users. We formulate a novel optimization problem over radio resources and content placement variables. We aim to minimize the network cost subject to quality-of-service (QoS), caching, subcarrier assignment, and power allocation constraints. By exploiting advanced optimization methods, such as alternative search method (ASM), Hungarian algorithm, successive convex approximation (SCA), we obtain an efficient sub-optimal solution of the optimization problem. Numerical results illustrate that our ergodic caching policy via the proposed resource management algorithm can achieve a considerable reduction on the total cost on average compared to the most popular caching and random caching policy. Moreover, our cooperative NOMA scheme outperforms orthogonal multiple access (OMA) in terms of the delivery cost in general with an acceptable complexity increase.



rate research

Read More

This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA). The delivery of a large volume of multimedia contents for ground users is assisted by a mobile UAV base station, which caches some popular contents for wireless backhaul link traffic offloading. In cache-enabling UAV NOMA networks, the caching placement of content caching phase and radio resource allocation of content delivery phase are crucial for network performance. To cope with the dynamic UAV locations and content requests in practical scenarios, we formulate the long-term caching placement and resource allocation optimization problem for content delivery delay minimization as a Markov decision process (MDP). The UAV acts as an agent to take actions for caching placement and resource allocation, which includes the user scheduling of content requests and the power allocation of NOMA users. In order to tackle the MDP, we propose a Q-learning based caching placement and resource allocation algorithm, where the UAV learns and selects action with emph{soft ${varepsilon}$-greedy} strategy to search for the optimal match between actions and states. Since the action-state table size of Q-learning grows with the number of states in the dynamic networks, we propose a function approximation based algorithm with combination of stochastic gradient descent and deep neural networks, which is suitable for large-scale networks. Finally, the numerical results show that the proposed algorithms provide considerable performance compared to benchmark algorithms, and obtain a trade-off between network performance and calculation complexity.
In this paper, we explore perpetual, scalable, Low-powered Wide-area networks (LPWA). Specifically we focus on the uplink transmissions of non-orthogonal multiple access (NOMA)-based LPWA networks consisting of multiple self-powered nodes and a NOMA-based single gateway. The self-powered LPWA nodes use the harvest-then-transmit protocol where they harvest energy from ambient sources (solar and radio frequency signals), then transmit their signals. The main features of the studied LPWA network are different transmission times-on-air, multiple uplink transmission attempts, and duty cycle restrictions. The aim of this work is to maximize the time-averaged sum of the uplink transmission rates by optimizing the transmission time-on-air allocation, the energy harvesting time allocation and the power allocation; subject to a maximum transmit power and to the availability of the harvested energy. We propose a low complex solution which decouples the optimization problem into three sub-problems: we assign the LPWA node transmission times (using either the fair or unfair approaches), we optimize the energy harvesting (EH) times using a one-dimensional search method, and optimize the transmit powers using a concave-convex (CCCP) procedure. In the simulation results, we focus on Long Range (LoRa) networks as a practical example LPWA network. We validate our proposed solution and we observe a $15%$ performance improvement when using NOMA.
In this paper, we propose a joint radio and core resource allocation framework for NFV-enabled networks. In the proposed system model, the goal is to maximize energy efficiency (EE), by guaranteeing end-to-end (E2E) quality of service (QoS) for different service types. To this end, we formulate an optimization problem in which power and spectrum resources are allocated in the radio part. In the core part, the chaining, placement, and scheduling of functions are performed to ensure the QoS of all users. This joint optimization problem is modeled as a Markov decision process (MDP), considering time-varying characteristics of the available resources and wireless channels. A soft actor-critic deep reinforcement learning (SAC-DRL) algorithm based on the maximum entropy framework is subsequently utilized to solve the above MDP. Numerical results reveal that the proposed joint approach based on the SAC-DRL algorithm could significantly reduce energy consumption compared to the case in which R-RA and NFV-RA problems are optimized separately.
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D links. To enhance the throughput of spectrum sharing D2D links, which may be severely limited by the interference among D2D links, we enable the cooperation among some of the D2D links to eliminate the interference among them. We formulate a joint link scheduling and power allocation problem to maximize the overall throughput of cooperative D2D links (CDLs) and non-cooperative D2D links (NDLs), which is NP-hard. To solve the problem, we decompose it into two subproblems that maximize the sum rates of the CDLs and the NDLs, respectively. For CDL optimization, we propose a semi-orthogonal-based algorithm for joint user scheduling and power allocation. For NDL optimization, we propose a novel low-complexity algorithm to perform link scheduling and develop a Difference of Convex functions (D.C.) programming method to solve the non-convex power allocation problem. Simulation results show that the cooperative transmission can significantly increase both the number of served users and the overall system throughput.
Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا