Do you want to publish a course? Click here

Resource Allocation for NOMA-based LPWA Networks Powered by Energy Harvesting

596   0   0.0 ( 0 )
 Added by Fatma Benkhelifa
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we explore perpetual, scalable, Low-powered Wide-area networks (LPWA). Specifically we focus on the uplink transmissions of non-orthogonal multiple access (NOMA)-based LPWA networks consisting of multiple self-powered nodes and a NOMA-based single gateway. The self-powered LPWA nodes use the harvest-then-transmit protocol where they harvest energy from ambient sources (solar and radio frequency signals), then transmit their signals. The main features of the studied LPWA network are different transmission times-on-air, multiple uplink transmission attempts, and duty cycle restrictions. The aim of this work is to maximize the time-averaged sum of the uplink transmission rates by optimizing the transmission time-on-air allocation, the energy harvesting time allocation and the power allocation; subject to a maximum transmit power and to the availability of the harvested energy. We propose a low complex solution which decouples the optimization problem into three sub-problems: we assign the LPWA node transmission times (using either the fair or unfair approaches), we optimize the energy harvesting (EH) times using a one-dimensional search method, and optimize the transmit powers using a concave-convex (CCCP) procedure. In the simulation results, we focus on Long Range (LoRa) networks as a practical example LPWA network. We validate our proposed solution and we observe a $15%$ performance improvement when using NOMA.



rate research

Read More

The combination of non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) can significantly improve the spectrum efficiency beyond the fifth-generation network. In this paper, we mainly focus on energy-efficient resource allocation for a multi-user, multi-BS NOMA assisted MEC network with imperfect channel state information (CSI), in which each user can upload its tasks to multiple base stations (BSs) for remote executions. To minimize the energy consumption, we consider jointly optimizing the task assignment, power allocation and user association. As the main contribution, with imperfect CSI, the optimal closed-form expressions of task assignment and power allocation are analytically derived for the two-BS case. Specifically, the original formulated problem is nonconvex. We first transform the probabilistic problem into a non-probabilistic one. Subsequently, a bilevel programming method is proposed to derive the optimal solution. In addition, by incorporating the matching algorithm with the optimal task and power allocation, we propose a low complexity algorithm to efficiently optimize user association for the multi-user and multi-BS case. Simulations demonstrate that the proposed algorithm can yield much better performance than the conventional OMA scheme but also the identical results with lower complexity from the exhaustive search with the small number of BSs.
Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.
This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA). The delivery of a large volume of multimedia contents for ground users is assisted by a mobile UAV base station, which caches some popular contents for wireless backhaul link traffic offloading. In cache-enabling UAV NOMA networks, the caching placement of content caching phase and radio resource allocation of content delivery phase are crucial for network performance. To cope with the dynamic UAV locations and content requests in practical scenarios, we formulate the long-term caching placement and resource allocation optimization problem for content delivery delay minimization as a Markov decision process (MDP). The UAV acts as an agent to take actions for caching placement and resource allocation, which includes the user scheduling of content requests and the power allocation of NOMA users. In order to tackle the MDP, we propose a Q-learning based caching placement and resource allocation algorithm, where the UAV learns and selects action with emph{soft ${varepsilon}$-greedy} strategy to search for the optimal match between actions and states. Since the action-state table size of Q-learning grows with the number of states in the dynamic networks, we propose a function approximation based algorithm with combination of stochastic gradient descent and deep neural networks, which is suitable for large-scale networks. Finally, the numerical results show that the proposed algorithms provide considerable performance compared to benchmark algorithms, and obtain a trade-off between network performance and calculation complexity.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffic requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
This article investigates the energy efficiency issue in non-orthogonal multiple access (NOMA)-enhanced Internet-of-Things (IoT) networks, where a mobile unmanned aerial vehicle (UAV) is exploited as a flying base station to collect data from ground devices via the NOMA protocol. With the aim of maximizing network energy efficiency, we formulate a joint problem of UAV deployment, device scheduling and resource allocation. First, we formulate the joint device scheduling and spectrum allocation problem as a three-sided matching problem, and propose a novel low-complexity near-optimal algorithm. We also introduce the novel concept of `exploration into the matching game for further performance improvement. By algorithm analysis, we prove the convergence and stability of the final matching state. Second, in an effort to allocate proper transmit power to IoT devices, we adopt the Dinkelbachs algorithm to obtain the optimal power allocation solution. Furthermore, we provide a simple but effective approach based on disk covering problem to determine the optimal number and locations of UAVs stop points to ensure that all IoT devices can be fully covered by the UAV via line-of-sight (LoS) links for the sake of better channel condition. Numerical results unveil that: i) the proposed joint UAV deployment, device scheduling and resource allocation scheme achieves much higher EE compared to predefined stationary UAV deployment case and fixed power allocation scheme, with acceptable complexity; and ii) the UAV-aided IoT networks with NOMA greatly outperforms the OMA case in terms of number of accessed devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا