Do you want to publish a course? Click here

Optimal Resource Allocation for Delay Minimization in NOMA-MEC Networks

170   0   0.0 ( 0 )
 Added by Fang Fang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.



rate research

Read More

The combination of non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) can significantly improve the spectrum efficiency beyond the fifth-generation network. In this paper, we mainly focus on energy-efficient resource allocation for a multi-user, multi-BS NOMA assisted MEC network with imperfect channel state information (CSI), in which each user can upload its tasks to multiple base stations (BSs) for remote executions. To minimize the energy consumption, we consider jointly optimizing the task assignment, power allocation and user association. As the main contribution, with imperfect CSI, the optimal closed-form expressions of task assignment and power allocation are analytically derived for the two-BS case. Specifically, the original formulated problem is nonconvex. We first transform the probabilistic problem into a non-probabilistic one. Subsequently, a bilevel programming method is proposed to derive the optimal solution. In addition, by incorporating the matching algorithm with the optimal task and power allocation, we propose a low complexity algorithm to efficiently optimize user association for the multi-user and multi-BS case. Simulations demonstrate that the proposed algorithm can yield much better performance than the conventional OMA scheme but also the identical results with lower complexity from the exhaustive search with the small number of BSs.
134 - X. Gao , Y. Liu , X. Liu 2021
A novel framework of intelligent reflecting surface (IRS)-aided multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) network is proposed, where a base station (BS) serves multiple clusters with unfixed number of users in each cluster. The goal is to maximize the sum rate of all users by jointly optimizing the passive beamforming vector at the IRS, decoding order, power allocation coefficient vector and number of clusters, subject to the rate requirements of users. In order to tackle the formulated problem, a three-step approach is proposed. More particularly, a long short-term memory (LSTM) based algorithm is first adopted for predicting the mobility of users. Secondly, a K-means based Gaussian mixture model (K-GMM) algorithm is proposed for user clustering. Thirdly, a deep Q-network (DQN) based algorithm is invoked for jointly determining the phase shift matrix and power allocation policy. Simulation results are provided for demonstrating that the proposed algorithm outperforms the benchmarks, while the throughput gain of 35% can be achieved by invoking NOMA technique instead of orthogonal multiple access (OMA).
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. This paper mainly focuses on the hybrid NOMA-MEC system, where multiple users are first grouped into pairs, and users in each pair offload their tasks simultaneously by NOMA, and then a dedicated time duration is scheduled to the more delay-tolerable user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) is applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrate the hybrid SIC scheme which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL) based algorithm is proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimize the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results show that the proposed algorithm converges fast, and the NOMA-MEC scheme outperforms the existing orthogonal multiple access (OMA) scheme.
166 - Yifu Yang , Gang Wu , Weidang Lu 2020
A Load Balancing Relay Algorithm (LBRA) was proposed to solve the unfair spectrum resource allocation in the traditional mobile MTC relay. In order to obtain reasonable use of spectrum resources, and a balanced MTC devices (MTCDs) distribution, spectrum resources are dynamically allocated by MTCDs regrouped on the MTCD to MTC gateway link. Moreover, the system outage probability and transmission capacity are derived when using LBRA. The numerical results show that the proposed algorithm has better performance in transmission capacity and outage probability than the traditional method. LBRA had an increase in transmission capacity of about 0.7dB, and an improvement in outage probability of about 0.8dB with a high MTCD density.
In this paper, we explore perpetual, scalable, Low-powered Wide-area networks (LPWA). Specifically we focus on the uplink transmissions of non-orthogonal multiple access (NOMA)-based LPWA networks consisting of multiple self-powered nodes and a NOMA-based single gateway. The self-powered LPWA nodes use the harvest-then-transmit protocol where they harvest energy from ambient sources (solar and radio frequency signals), then transmit their signals. The main features of the studied LPWA network are different transmission times-on-air, multiple uplink transmission attempts, and duty cycle restrictions. The aim of this work is to maximize the time-averaged sum of the uplink transmission rates by optimizing the transmission time-on-air allocation, the energy harvesting time allocation and the power allocation; subject to a maximum transmit power and to the availability of the harvested energy. We propose a low complex solution which decouples the optimization problem into three sub-problems: we assign the LPWA node transmission times (using either the fair or unfair approaches), we optimize the energy harvesting (EH) times using a one-dimensional search method, and optimize the transmit powers using a concave-convex (CCCP) procedure. In the simulation results, we focus on Long Range (LoRa) networks as a practical example LPWA network. We validate our proposed solution and we observe a $15%$ performance improvement when using NOMA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا