No Arabic abstract
We present a full symmetry classification of fermion matter in and out of thermal equilibrium. Our approach starts from first principles, the ten different classes of linear and anti-linear state transformations in fermionic Fock spaces, and symmetries defined via invariance properties of the dynamical equation for the density matrix. The object of classification are then the generators of reversible dynamics, dissipation and fluctuations featuring in the generally irreversible and interacting dynamical equations. A sharp distinction between the symmetries of equilibrium and out of equilibrium dynamics, respectively, arises from the different role played by `time in these two cases: In unitary quantum mechanics as well as in `micro-reversible thermal equilibrium, anti-linear transformations combined with an inversion of time define time reversal symmetry. However, out of equilibrium an inversion of time becomes meaningless, while anti--linear transformations in Fock space remain physically significant, and hence must be considered in autonomy. The practical consequence of this dichotomy is a novel realization of antilinear symmetries (six out of the ten fundamental classes) in non-equilibrium quantum dynamics that is fundamentally different from the established rules of thermal equilibrium. At large times, the dynamical generators thus symmetry classified determine the steady state non-equilibrium distributions for arbitrary interacting systems. To illustrate this principle, we consider the fixation of a symmetry protected topological phase in a system of interacting lattice fermions. More generally, we consider the practically important class of mean field interacting systems, represented by Gaussian states. This class is naturally described in the language of non-Hermitian matrices, which allows us to compare to previous classification schemes in the literature.
We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symmetry-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional $mathbb{Z}_2 times mathbb{Z}_2$ SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional $mathbb{Z}_2$ SPT states (e.g. Levin-Gu state) have both a symmetry-protected sign problem and symmetry-protected magic. We also comment on the relation of a symmetry-protected sign problem to the computational wire property of one-dimensional SPT states and speculate about the greater implications of our results for measurement-based quantum computing.
We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line T_c(delta), with delta a non-thermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature T_G to the transition temperature T_c, the latter being associated with a non-Gaussian fixed-point.
We present a comprehensive analysis of quantum fluctuation effects in the superfluid ground state of an attractively interacting Fermi system, employing the attractive Hubbard model as a prototype. The superfluid order parameter, and fluctuations thereof, are implemented by a bosonic Hubbard-Stratonovich field, which splits into two components corresponding to longitudinal and transverse (Goldstone) fluctuations. Physical properties of the system are computed from a set of approximate flow equations obtained by truncating the exact functional renormalization group flow of the coupled fermion-boson action. The equations capture the influence of fluctuations on non-universal quantities such as the fermionic gap, as well as the universal infrared asymptotics present in every fermionic superfluid. We solve the flow equations numerically in two dimensions and compute the asymptotic behavior analytically in two and three dimensions. The fermionic gap Delta is reduced significantly compared to the mean-field gap, and the bosonic order parameter alpha, which is equivalent to Delta in mean-field theory, is suppressed to values below Delta by fluctuations. The fermion-boson vertex is only slightly renormalized. In the infrared regime, transverse order parameter fluctuations associated with the Goldstone mode lead to a strong renormalization of longitudinal fluctuations: the longitudinal mass and the bosonic self-interaction vanish linearly as a function of the scale in two dimensions, and logarithmically in three dimensions, in agreement with the exact behavior of an interacting Bose gas.
Close to the quantum critical point of the transverse-field Ising spin-chain model, an exotic dynamic spectrum was predicted to emerge upon a perturbative longitudinal field. The dynamic spectrum consists of eight particles and is governed by the symmetry of the $E_8$ Lie algebra. Here we report on high-resolution terahertz spectroscopy of quantum spin dynamics in the ferromagnetic Ising-chain material CoNb$_2$O$_6$. At 0.25 K in the magnetically ordered phase we identify characteristics of the first six $E_8$ particles, $mathbf{m}_1$ to $mathbf{m}_6$, and the two-particle ($mathbf{m}_1+mathbf{m}_2$) continuum in an applied transverse magnetic field of $B_c^{1D}=4.75$ T, before the three-dimensional magnetic order is suppressed above $B_c^{3D}approx 5.3$ T. The observation of the higher-energy particles ($mathbf{m}_3$ to $mathbf{m}_6$) above the low-energy two-particle continua features quantum many-body effects in the exotic dynamic spectrum.
Motivated by the existence of exact many-body quantum scars in the AKLT chain, we explore the connection between Matrix Product State (MPS) wavefunctions and many-body quantum scarred Hamiltonians. We provide a method to systematically search for and construct parent Hamiltonians with towers of exact eigenstates composed of quasiparticles on top of an MPS wavefunction. These exact eigenstates have low entanglement in spite of being in the middle of the spectrum, thus violating the strong Eigenstate Thermalization Hypothesis (ETH). Using our approach, we recover the AKLT chain starting from the MPS of its ground state, and we derive the most general nearest-neighbor Hamiltonian that shares the AKLT quasiparticle tower of exact eigenstates. We further apply this formalism to other simple MPS wavefunctions, and derive new families of Hamiltonians that exhibit AKLT-like quantum scars. As a consequence, we also construct a scar-preserving deformation that connects the AKLT chain to the integrable spin-1 pure biquadratic model. Finally, we also derive other families of Hamiltonians that exhibit new types of exact quantum scars, including a $U(1)$-invariant perturbed Potts model.