Do you want to publish a course? Click here

Symmetry-protected sign problem and magic in quantum phases of matter

114   0   0.0 ( 0 )
 Added by Tyler D. Ellison
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symmetry-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional $mathbb{Z}_2 times mathbb{Z}_2$ SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional $mathbb{Z}_2$ SPT states (e.g. Levin-Gu state) have both a symmetry-protected sign problem and symmetry-protected magic. We also comment on the relation of a symmetry-protected sign problem to the computational wire property of one-dimensional SPT states and speculate about the greater implications of our results for measurement-based quantum computing.

rate research

Read More

We investigate the quantization of the complex-valued Berry phases in non-Hermitian quantum systems with certain generalized symmetries. In Hermitian quantum systems, the real-valued Berry phase is known to be quantized in the presence of certain symmetries, and this quantized Berry phase can be regarded as a topological order parameter for gapped quantum systems. In this paper, on the other hand, we establish that the complex Berry phase is also quantized in the systems described by a family of non-Hermitian Hamiltonians. Let $H(theta)$ be a non-Hermitian Hamiltonian parameterized by $theta$. Suppose that there exists a unitary and Hermitian operator $P$ such that $PH(theta)P = H(-theta)$ or $PH(theta)P = H^dagger(-theta)$. We prove that in the former case, the complex Berry phase $gamma$ is $mathbb{Z}_2$-quantized, while in the latter, only the real part of $gamma$ is $mathbb{Z}_2$-quantized. The operator $P$ can be viewed as a generalized symmetry for $H(theta)$, and in practice, $P$ can be, for example, a spatial inversion. We also argue that this quantized complex Berry phase is capable of classifying non-Hermitian topological phases, and we demonstrate this in some one-dimensional strongly correlated systems.
We classify subsystem symmetry-protected topological (SSPT) phases in $3+1$D protected by planar subsystem symmetries, which are dual to abelian fracton topological orders. We distinguish between weak SSPTs, which can be constructed by stacking $2+1$D SPTs, and strong SSPTs, which cannot. We identify signatures of strong phases, and show by explicit construction that such phases exist. A classification of strong phases is presented for an arbitrary finite abelian group. Finally, we show that fracton orders realizable via $p$-string condensation are dual to weak SSPTs, while strong SSPTs do not admit such a realization.
Floquet symmetry protected topological (FSPT) phases are non-equilibrium topological phases enabled by time-periodic driving. FSPT phases of 1d chains of bosons, spins, or qubits host dynamically protected edge states that can store quantum information without decoherence, making them promising for use as quantum memories. While FSPT order cannot be detected by any local measurement, here we construct non-local string order parameters that directly measure general 1d FSPT order. We propose a superconducting-qubit array based realization of the simplest Ising-FSPT, which can be implemented with existing quantum computing hardware. We devise an interferometric scheme to directly measure the non-local string order using only simple one- and two- qubit operations and single-qubit measurements.
Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to non-trivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses Matrix Product States (MPS) and the infinite Time-Evolving Block Decimation (iTEBD) method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by Conformal Field Theories (CFT) with central charge c=1. Our results are in agreement, and further generalize, those in [Y. Fuji, F. Pollmann, M. Oshikawa, Phys. Rev. Lett. 114, 177204 (2015)].
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا