Do you want to publish a course? Click here

A First-Principles Nonequilibrium Deterministic Equation of Motion of a Brownian Particle and Microscopic Viscous Drag

148   0   0.0 ( 0 )
 Added by Puru Gujrati
 Publication date 2020
  fields Physics
and research's language is English
 Authors P.D. Gujrati




Ask ChatGPT about the research

We present a first-principles thermodynamic approach to provide an alternative to the Langevin equation by identifying the deterministic (no stochastic component) microforce F_{k,BP} acting on a nonequilibrium Brownian particle (BP) in its kth microstate m_{k}. (The prefix micro refers to microstate quantities and carry a suffix k.) The deterministic new equation is easier to solve using basic calculus. Being oblivious to the second law, F_{k,BP} does not always oppose motion but viscous dissipation emerges upon ensemble averaging. The equipartition theorem is always satisfied. We reproduce well-known results of the BP in equilibrium. We explain how the microforce is obtained directly from the mutual potential energy of interaction beween the BP and the medium after we average it over the medium so we only have to consider the particles in the BP. Our approach goes beyond the phenomenological and equilibrium approach of Langevin and unifies nonequilibrium viscous dissipation from mesoscopic to macroscopic scales and provides new insight into Brownian motion beyond Langevins and Einsteins formulation.



rate research

Read More

Brownian motion of a particle with an arbitrary shape is investigated theoretically. Analytical expressions for the time-dependent cross-correlations of the Brownian translational and rotational displacements are derived from the Smoluchowski equation. The role of the particle mobility center is determined and discussed.
At fast timescales, the self-similarity of random Brownian motion is expected to break down and be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and precise enough to capture this motion. With a newly developed detector, we have been able to observe the Brownian motion of a single particle in an optical trap with 75 MHz bandwidth and sub-{AA}ngstrom spatial precision. We report the first measurements of ballistic Brownian motion as well as the first determination of the velocity autocorrelation function of a Brownian particle. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and the surrounding fluid as well as hydrodynamic memory effects.
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einsteins relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own effective temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einsteins relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.
Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.
190 - A.V. Plyukhin 2008
Microscopic theory of Brownian motion of a particle of mass $M$ in a bath of molecules of mass $mll M$ is considered beyond lowest order in the mass ratio $m/M$. The corresponding Langevin equation contains nonlinear corrections to the dissipative force, and the generalized Fokker-Planck equation involves derivatives of order higher than two. These equations are derived from first principles with coefficients expressed in terms of correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath, we recover the results obtained previously for a model with instantaneous binary collisions. In general case, the equations contain additional corrections, quadratic in bath density, originating from a finite collision time. These corrections survive to order $(m/M)^2$ and are found to make the stationary distribution non-Maxwellian. Some relevant numerical simulations are also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا