No Arabic abstract
We report a high-resolution photocurrent (PC) spectroscopy of a single self-assembled InAs/GaAs quantum dot (QD) embedded in an n-i-Schottky device with an applied vector magnetic field. The PC spectra of positively charged exciton (X$^+$) and neutral exciton (X$^0$) are obtained by two-color resonant excitation. With an applied magnetic field in Voigt geometry, the double $Lambda$ energy level structure of X$^+$ and the dark states of X$^0$ are observed in PC spectra clearly. In Faraday geometry, the PC amplitude of X$^+$ decreases and then quenches with the increasing of the magnetic field, which provides a new way to determine the relative sign of the electron and the hole g-factors. With an applied vector magnetic field, the electron and the hole g-factor tensors of X$^+$ and X$^0$ are obtained. The anisotropy of the hole g-factors of both X$^+$ and X$^0$ is larger than that of the electron.
We characterize the positively charged exciton (X1+) in single InGaAs quantum dots using resonant laser spectroscopy. Three samples with different dopant species (Be or C as acceptors, Si as a donor) are compared. The p-doped samples exhibit larger inhomogeneous broadening (x3) and smaller absorption contrast (x10) than the n-doped sample. For X1+ in the Be-doped sample, a dot dependent non-linear Fano effect is observed, demonstrating coupling to degenerate continuum states. However, for the C-doped sample the X1+ lineshape and saturation broadening follows isolated atomic transition behaviour. This C-doped device structure is useful for single hole spin initialization, manipulation, and measurement.
We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.
We analyze the lineshape of the quasiparticle photoluminescence of monolayer and bilayer molybdenum ditelluride in temperature- and excitation intensity-dependent experiments. We confirm the existence of a negatively charged trion in the bilayer based on its emission characteristics and find hints for a coexistence of intra- and interlayer trions with a few meV splitting in energy. From the lineshape analysis of exciton and trion emission we extract values for exciton and trion deformation potentials as well as acoustical and optical phonon-limited mobilities in MoTe2, with the mobilities showing the highest values so far reported for transition metal dichalcogenides.
We demonstrated the cancellation of the external magnetic field by the nuclear field at one edge of the nuclear polarization bistability in single InAlAs quantum dots. The cancellation for the electron Zeeman splitting gives the precise value of the hole g-factor. By combining with the exciton g-factor that is obtained from the Zeeman splitting for linearly polarized excitation, the magnitude and sign of the electron and hole g-factors in the growth direction are evaluated.
We present a comprehensive study of the optical transitions and selection rules of variably charged single self-assembled InAs/GaAs quantum dots. We apply high resolution polarization sensitive photoluminescence excitation spectroscopy to the same quantum dot for three different charge states: neutral and negatively or positively charged by one additional electron or hole. From the detailed analysis of the excitation spectra, a full understanding of the single-carrier energy levels and the interactions between carriers in these levels is extracted for the first time.