Do you want to publish a course? Click here

Laser spectroscopy of individual quantum dots charged with a single hole

306   0   0.0 ( 0 )
 Added by Brian Gerardot
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize the positively charged exciton (X1+) in single InGaAs quantum dots using resonant laser spectroscopy. Three samples with different dopant species (Be or C as acceptors, Si as a donor) are compared. The p-doped samples exhibit larger inhomogeneous broadening (x3) and smaller absorption contrast (x10) than the n-doped sample. For X1+ in the Be-doped sample, a dot dependent non-linear Fano effect is observed, demonstrating coupling to degenerate continuum states. However, for the C-doped sample the X1+ lineshape and saturation broadening follows isolated atomic transition behaviour. This C-doped device structure is useful for single hole spin initialization, manipulation, and measurement.



rate research

Read More

We probe local charge fluctuations in a semiconductor via laser spectroscopy on a nearby self-assembled quantum dot. We demonstrate that the quantum dot is sensitive to changes in the local environment at the single charge level. By controlling the charge state of localized defects, we are able to infer the distance of the defects from the quantum dot with +-5 nm resolution. The results identify and quantify the main source of charge noise in the commonly-used optical field-effect devices. Based on this understanding we achieve routinely close-totransform-limited quantum dot optical linewidths.
We present an experimental and theoretical study of the polarized photoluminescence spectrum of single semiconductor quantum dots in various charge states. We compare our high resolution polarization sensitive spectral measurements with a new many-carrier theoretical model, which was developed for this purpose. The model considers both the isotropic and anisotropic exchange interactions between all participating electron-hole pairs. With this addition, we calculate both the energies and polarizations of all optical transitions between collective, quantum dot confined charge carrier states. We succeed in identifying most of the measured spectral lines. In particular, the lines resulting from singly-, doubly- and triply- negatively charged excitons and biexcitons. We demonstrate that lines emanating from evenly charged states are linearly polarized. Their polarization direction does not necessarily coincide with the traditional crystallographic direction. It depends on the shells of the single carriers, which participate in the recombination process.
We present a microscopic theory of the optical properties of self-assembled quantum dots doped with a single magnetic manganese (Mn) impurity and containing a controlled number of electrons. The single-particle electron and heavy-hole electronic shells are described by two-dimensional harmonic oscillators. The electron-electron, electron-hole Coulomb as well as the short-range electron spin-Mn spin and hole spin-Mn spin contact exchange interactions are included. The electronic states of the photo-excited electron-hole-Mn complex and of the final electron-Mn complex are expanded in a finite number of configurations and the full interacting Hamiltonian is diagonalized numerically. The emission spectrum is predicted as a function of photon energy for a given number of electrons and different number of confined electronic quantum dot shells. We show how emission spectra allow to identify the number of electronic shells, the number of electrons populating these shells and, most importantly, their spin. We show that electrons not interacting directly with the spin of Mn ion do so via electron-electron interactions. This indirect interaction is a strong effect even when Mn impurity is away from the quantum dot center.
120 - Y. Benny , Y. Kodriano , E. Poem 2012
We present a comprehensive study of the optical transitions and selection rules of variably charged single self-assembled InAs/GaAs quantum dots. We apply high resolution polarization sensitive photoluminescence excitation spectroscopy to the same quantum dot for three different charge states: neutral and negatively or positively charged by one additional electron or hole. From the detailed analysis of the excitation spectra, a full understanding of the single-carrier energy levels and the interactions between carriers in these levels is extracted for the first time.
87 - Shiyao Wu , Kai Peng , Xin Xie 2020
We report a high-resolution photocurrent (PC) spectroscopy of a single self-assembled InAs/GaAs quantum dot (QD) embedded in an n-i-Schottky device with an applied vector magnetic field. The PC spectra of positively charged exciton (X$^+$) and neutral exciton (X$^0$) are obtained by two-color resonant excitation. With an applied magnetic field in Voigt geometry, the double $Lambda$ energy level structure of X$^+$ and the dark states of X$^0$ are observed in PC spectra clearly. In Faraday geometry, the PC amplitude of X$^+$ decreases and then quenches with the increasing of the magnetic field, which provides a new way to determine the relative sign of the electron and the hole g-factors. With an applied vector magnetic field, the electron and the hole g-factor tensors of X$^+$ and X$^0$ are obtained. The anisotropy of the hole g-factors of both X$^+$ and X$^0$ is larger than that of the electron.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا