Do you want to publish a course? Click here

Galactic abundance gradients from Cepheids: alpha and heavy elements in the outer disk

116   0   0.0 ( 0 )
 Added by Bertrand Lemasle
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the PL relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use HR spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), alpha (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the NIR enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement with previous studies on either Cepheids or other tracers. In particular, we confirm an upward shift of approximatively 0.2 dex for the Mg abundances, as has recently been reported. We also confirm the existence of a gradient for all the heavy elements studied in the context of a LTE analysis. However, for Y, Nd, and especially La, we find lower abundances for Cepheids in the outer disk than reported in previous studies, leading to steeper gradients. This effect can be explained by the differences in the line lists used by different groups. Conclusions: Our data do not support a flattening of the gradients in the outer disk, in agreement with recent Cepheid studies and chemo-dynamical simulations. This is in contrast to the open cluster observations but remains compatible with a picture where the transition zone between the inner disk and the outer disk would move outward with time.

rate research

Read More

The relationship between abundances and orbital parameters for 235 F- and G-type intermediate- and low- mass stars in the Galaxy is analyzed. We found that there are abundance gradients in the thin disk in both radial and vertical directions (-0.116 dex/kpc and -0.309 dex/kpc respectively). The gradients appear to be flatter as the Galaxy evolves. No gradient is found in the thick disk based on 18 thick disk stars. These results indicate that the ELS model is mainly suitable for the evolution of the thin disk, while the SZ model is more suitable for the evolution of the thick disk. Additionally, these results indicate that in-fall and out-flow processes play important roles in the chemical evolution of the Galaxy.
We present new homogeneous measurements of Na, Al and three alpha-elements (Mg, Si, Ca) for 75 Galactic Cepheids. The abundances are based on high spectral resolution (R ~ 38,000) and high signal-to-noise ratio (S/N ~ 50-300) spectra collected with UVES at ESO VLT. The current measurements were complemented with Cepheid abundances either provided by our group (75) or available in the literature, for a total of 439 Galactic Cepheids. Special attention was given in providing a homogeneous abundance scale for these five elements plus iron (Genovali et al. 2013, 2014). In addition, accurate Galactocentric distances (RG) based on near-infrared photometry are also available for all the Cepheids in the sample (Genovali et al. 2014). They cover a large fraction of the Galactic thin disk (4.1 <= RG <= 18.4 kpc). We found that the above five elements display well defined linear radial gradients and modest standard deviations over the entire range of RG. Moreover, the [element/Fe] abundance ratios are constant across the entire thin disk; only the Ca radial distribution shows marginal evidence of a positive slope. These results indicate that the chemical enrichment history of iron and of the quoted five elements has been quite similar across the four quadrants of the Galactic thin disk. The [element/Fe] ratios are also constant over the entire period range. This empirical evidence indicates that the chemical enrichment of Galactic Cepheids has also been very homogenous during the range in age that they cover (~10-300 Myr). Once again, [Ca/Fe] vs. log(P) shows a (negative) gradient, being underabundant among youngest Cepheids. Finally, we also found that Cepheid abundances agree quite well with similar abundances for thin and thick disk dwarf stars and they follow the typical Mg-Al and Na-O correlations.
Using a sample of 31 main-sequence OB stars located between galactocentric distances 8.4 - 15.6 kpc, we aim to probe the present-day radial abundance gradients of the Galactic disk. The analysis is based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan Clay 6.5-m telescope on Las Campanas. We used a non-NLTE analysis in a self-consistent semi-automatic routine based on TLUSTY and SYNSPEC to determine atmospheric parameters and chemical abundances. Stellar parameters (effective temperature, surface gravity, projected rotational velocity, microturbulence, and macroturbulence) and silicon and oxygen abundances are presented for 28 stars located beyond 9 kpc from the Galactic centre plus three stars in the solar neighborhood. The stars of our sample are mostly on the main-sequence, with effective temperatures between 20800 - 31300 K, and surface gravities between 3.23 - 4.45 dex. The radial oxygen and silicon abundance gradients are negative and have slopes of -0.07 dex/kpc and -0.09 dex/kpc, respectively, in the region $8.4 leq R_G leq 15.6$,kpc. The obtained gradients are compatible with the present-day oxygen and silicon abundances measured in the solar neighborhood and are consistent with radial metallicity gradients predicted by chemodynamical models of Galaxy Evolution for a subsample of young stars located close to the Galactic plane.
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([$alpha$/Fe] vs. [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc and the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. (2017) for the solar neighborhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes which mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, HII regions and PNe. We conclude that the inside-out scenario is a key ingredient, but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
116 - R. da Silva , B. Lemasle , G. Bono 2015
We present new accurate abundances for five neutron-capture (Y, La, Ce, Nd, Eu) elements in 73 classical Cepheids located across the Galactic thin disk. Individual abundances are based on high spectral resolution (R ~ 38,000) and high signal-to-noise ratio (S/N ~ 50-300) spectra collected with UVES at ESO VLT for the DIONYSOS project. Taking account for similar Cepheid abundances provided either by our group (111 stars) or available in the literature, we end up with a sample of 435 Cepheids covering a broad range in iron abundances (-1.6 < [Fe/H] < 0.6). We found, using homogeneous individual distances and abundance scales, well defined gradients for the above elements. However, the slope of the light s-process element (Y) is at least a factor of two steeper than the slopes of heavy s- (La, Ce, Nd) and r- (Eu) process elements. The s to r abundance ratio ([La/Eu]) of Cepheids shows a well defined anticorrelation with of both Eu and Fe. On the other hand, Galactic field stars attain an almost constant value and only when they approach solar iron abundance display a mild enhancement in La. The [Y/Eu] ratio shows a mild evidence of a correlation with Eu and, in particular, with iron abundance for field Galactic stars. We also investigated the s-process index - [hs/ls] - and we found a well defined anticorrelation, as expected, between [La/Y] and iron abundance. Moreover, we found a strong correlation between [La/Y] and [La/Fe] and, in particular, a clear separation between Galactic and Sagittarius red giants. Finally, the comparison between predictions for low-mass asymptotic giant branch stars and the observed [La/Y] ratio indicate a very good agreement over the entire metallicity range covered by Cepheids. However, the observed spread, at fixed iron content, is larger than predicted by current models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا