Do you want to publish a course? Click here

On diagonal dominance of FEM stiffness matrix of fractional Laplacian and maximum principle preserving schemes for fractional Allen-Cahn equation

312   0   0.0 ( 0 )
 Added by Huifang Yuan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we study diagonal dominance of the stiffness matrix resulted from the piecewise linear finite element discretisation of the integral fractional Laplacian under global homogeneous Dirichlet boundary condition in one spatial dimension. We first derive the exact form of this matrix in the frequency space which is extendable to multi-dimensional rectangular elements. Then we give the complete answer when the stiffness matrix can be strictly diagonally dominant. As one application, we apply this notion to the construction of maximum principle preserving schemes for the fractional-in-space Allen-Cahn equation, and provide ample numerical results to verify our findings.



rate research

Read More

137 - Dianming Hou , Chuanju Xu 2021
In this paper, we propose and analyze a time-stepping method for the time fractional Allen-Cahn equation. The key property of the proposed method is its unconditional stability for general meshes, including the graded mesh commonly used for this type of equations. The unconditional stability is proved through establishing a discrete nonlocal free energy dispassion law, which is also true for the continuous problem. The main idea used in the analysis is to split the time fractional derivative into two parts: a local part and a history part, which are discretized by the well known L1, L1-CN, and $L1^{+}$-CN schemes. Then an extended auxiliary variable approach is used to deal with the nonlinear and history term. The main contributions of the paper are: First, it is found that the time fractional Allen-Chan equation is a dissipative system related to a nonlocal free energy. Second, we construct efficient time stepping schemes satisfying the same dissipation law at the discrete level. In particular, we prove that the proposed schemes are unconditionally stable for quite general meshes. Finally, the efficiency of the proposed method is verified by a series of numerical experiments.
We derive exact form of the piecewise-linear finite element stiffness matrix on general non-uniform meshes for the integral fractional Laplacian operator in one dimension, where the derivation is accomplished in the Fourier transformed space. With such an exact formulation at our disposal, we are able to numerically study some intrinsic properties of the fractional stiffness matrix on some commonly used non-uniform meshes (e.g., the graded mesh), in particular, to examine their seamless transition to those of the usual Laplacian.
A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1$^{+}$ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implement. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.
We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen--Cahn equations. We apply a $k$th-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), and a lumped mass finite element method in space with piecewise $r$th-order polynomials and Gauss--Lobatto quadrature. At each time level, a cut-off post-processing is proposed to eliminate extra values violating the maximum bound principle at the finite element nodal points. As a result, the numerical solution satisfies the maximum bound principle (at all nodal points), and the optimal error bound $O(tau^k+h^{r+1})$ is theoretically proved for a certain class of schemes. These time stepping schemes under consideration includes algebraically stable collocation-type methods, which could be arbitrarily high-order in both space and time. Moreover, combining the cut-off strategy with the scalar auxiliary value (SAV) technique, we develop a class of energy-stable and maximum bound preserving schemes, which is arbitrarily high-order in time. Numerical results are provided to illustrate the accuracy of the proposed method.
92 - Daxin Nie , Weihua Deng 2021
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and convergence of the scheme with the convergence rate no worse than $mathcal{O}(h^{k+frac{1}{2}})$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا