Do you want to publish a course? Click here

Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint

139   0   0.0 ( 0 )
 Added by Hong-Lin Liao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1$^{+}$ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implement. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.



rate research

Read More

137 - Dianming Hou , Chuanju Xu 2021
In this paper, we propose and analyze a time-stepping method for the time fractional Allen-Cahn equation. The key property of the proposed method is its unconditional stability for general meshes, including the graded mesh commonly used for this type of equations. The unconditional stability is proved through establishing a discrete nonlocal free energy dispassion law, which is also true for the continuous problem. The main idea used in the analysis is to split the time fractional derivative into two parts: a local part and a history part, which are discretized by the well known L1, L1-CN, and $L1^{+}$-CN schemes. Then an extended auxiliary variable approach is used to deal with the nonlinear and history term. The main contributions of the paper are: First, it is found that the time fractional Allen-Chan equation is a dissipative system related to a nonlocal free energy. Second, we construct efficient time stepping schemes satisfying the same dissipation law at the discrete level. In particular, we prove that the proposed schemes are unconditionally stable for quite general meshes. Finally, the efficiency of the proposed method is verified by a series of numerical experiments.
Hydrodynamics coupled phase field models have intricate difficulties to solve numerically as they feature high nonlinearity and great complexity in coupling. In this paper, we propose two second order, linear, unconditionally stable decoupling methods based on the Crank--Nicolson leap-frog time discretization for solving the Allen--Cahn--Navier--Stokes (ACNS) phase field model of two-phase incompressible flows. The ACNS system is decoupled via the artificial compression method and a splitting approach by introducing an exponential scalar auxiliary variable. We prove both algorithms are unconditionally long time stable. Numerical examples are provided to verify the convergence rate and unconditional stability.
In this paper, we study diagonal dominance of the stiffness matrix resulted from the piecewise linear finite element discretisation of the integral fractional Laplacian under global homogeneous Dirichlet boundary condition in one spatial dimension. We first derive the exact form of this matrix in the frequency space which is extendable to multi-dimensional rectangular elements. Then we give the complete answer when the stiffness matrix can be strictly diagonally dominant. As one application, we apply this notion to the construction of maximum principle preserving schemes for the fractional-in-space Allen-Cahn equation, and provide ample numerical results to verify our findings.
We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen--Cahn equations. We apply a $k$th-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), and a lumped mass finite element method in space with piecewise $r$th-order polynomials and Gauss--Lobatto quadrature. At each time level, a cut-off post-processing is proposed to eliminate extra values violating the maximum bound principle at the finite element nodal points. As a result, the numerical solution satisfies the maximum bound principle (at all nodal points), and the optimal error bound $O(tau^k+h^{r+1})$ is theoretically proved for a certain class of schemes. These time stepping schemes under consideration includes algebraically stable collocation-type methods, which could be arbitrarily high-order in both space and time. Moreover, combining the cut-off strategy with the scalar auxiliary value (SAV) technique, we develop a class of energy-stable and maximum bound preserving schemes, which is arbitrarily high-order in time. Numerical results are provided to illustrate the accuracy of the proposed method.
We present several first-order and second-order numerical schemes for the Cahn-Hilliard equation with discrete unconditional energy stability. These schemes stem from the generalized Positive Auxiliary Variable (gPAV) idea, and require only the solution of linear algebraic systems with a constant coefficient matrix. More importantly, the computational complexity (operation count per time step) of these schemes is approximately a half of those of the gPAV and the scalar auxiliary variable (SAV) methods in previous works. We investigate the stability properties of the proposed schemes to establish stability bounds for the field function and the auxiliary variable, and also provide their error analyses. Numerical experiments are presented to verify the theoretical analyses and also demonstrate the stability of the schemes at large time step sizes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا