Do you want to publish a course? Click here

Unsupervised Multi-Target Domain Adaptation Through Knowledge Distillation

106   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Unsupervised domain adaptation (UDA) seeks to alleviate the problem of domain shift between the distribution of unlabeled data from the target domain w.r.t. labeled data from the source domain. While the single-target UDA scenario is well studied in the literature, Multi-Target Domain Adaptation (MTDA) remains largely unexplored despite its practical importance, e.g., in multi-camera video-surveillance applications. The MTDA problem can be addressed by adapting one specialized model per target domain, although this solution is too costly in many real-world applications. Blending multiple targets for MTDA has been proposed, yet this solution may lead to a reduction in model specificity and accuracy. In this paper, we propose a novel unsupervised MTDA approach to train a CNN that can generalize well across multiple target domains. Our Multi-Teacher MTDA (MT-MTDA) method relies on multi-teacher knowledge distillation (KD) to iteratively distill target domain knowledge from multiple teachers to a common student. The KD process is performed in a progressive manner, where the student is trained by each teacher on how to perform UDA for a specific target, instead of directly learning domain adapted features. Finally, instead of combining the knowledge from each teacher, MT-MTDA alternates between teachers that distill knowledge, thereby preserving the specificity of each target (teacher) when learning to adapt to the student. MT-MTDA is compared against state-of-the-art methods on several challenging UDA benchmarks, and empirical results show that our proposed model can provide a considerably higher level of accuracy across multiple target domains. Our code is available at: https://github.com/LIVIAETS/MT-MTDA



rate research

Read More

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.
Currently, the divergence in distributions of design and operational data, and large computational complexity are limiting factors in the adoption of CNNs in real-world applications. For instance, person re-identification systems typically rely on a distributed set of cameras, where each camera has different capture conditions. This can translate to a considerable shift between source (e.g. lab setting) and target (e.g. operational camera) domains. Given the cost of annotating image data captured for fine-tuning in each target domain, unsupervised domain adaptation (UDA) has become a popular approach to adapt CNNs. Moreover, state-of-the-art deep learning models that provide a high level of accuracy often rely on architectures that are too complex for real-time applications. Although several compression and UDA approaches have recently been proposed to overcome these limitations, they do not allow optimizing a CNN to simultaneously address both. In this paper, we propose an unexplored direction -- the joint optimization of CNNs to provide a compressed model that is adapted to perform well for a given target domain. In particular, the proposed approach performs unsupervised knowledge distillation (KD) from a complex teacher model to a compact student model, by leveraging both source and target data. It also improves upon existing UDA techniques by progressively teaching the student about domain-invariant features, instead of directly adapting a compact model on target domain data. Our method is compared against state-of-the-art compression and UDA techniques, using two popular classification datasets for UDA -- Office31 and ImageClef-DA. In both datasets, results indicate that our method can achieve the highest level of accuracy while requiring a comparable or lower time complexity.
Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings where there is a single, labeled, source and a single target domain. However, in many real-world settings one seeks to adapt to multiple, but somewhat similar, target domains. Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail to leverage shared information among multiple domains. In this work we propose an information theoretic approach for domain adaptation in the novel context of multiple target domains with unlabeled instances and one source domain with labeled instances. Our model aims to find a shared latent space common to all domains, while simultaneously accounting for the remaining private, domain-specific factors. Disentanglement of shared and private information is accomplished using a unified information-theoretic approach, which also serves to establish a stronger link between the latent representations and the observed data. The resulting model, accompanied by an efficient optimization algorithm, allows simultaneous adaptation from a single source to multiple target domains. We test our approach on three challenging publicly-available datasets, showing that it outperforms several popular domain adaptation methods.
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy. However, it is not always feasible to obtain high-quality supervisory signals from users, especially for vision tasks. Unlike typical federated settings with labeled client data, we consider a more practical scenario where the distributed client data is unlabeled, and a centralized labeled dataset is available on the server. We further take the server-client and inter-client domain shifts into account and pose a domain adaptation problem with one source (centralized server data) and multiple targets (distributed client data). Within this new Federated Multi-Target Domain Adaptation (FMTDA) task, we analyze the model performance of exiting domain adaptation methods and propose an effective DualAdapt method to address the new challenges. Extensive experimental results on image classification and semantic segmentation tasks demonstrate that our method achieves high accuracy, incurs minimal communication cost, and requires low computational resources on client devices.
Most domain adaptation methods focus on single-source-single-target adaptation setting. Multi-target domain adaptation is a powerful extension in which a single classifier is learned for multiple unlabeled target domains. To build a multi-target classifier, it is crucial to effectively aggregate features from the labeled source and different unlabeled target domains. Towards this, recently introduced Domain-aware Curriculum Graph Co-Teaching (D-CGCT) exploits dual classifier head, one of which is based on the graph neural network. D-CGCT uses a sequential adaptation strategy that adapts one domain at a time starting from the target domains that are more similar to the source, assuming that the network finds it easier to adapt to such target domains. However, we argue that there is no easier domain or difficult domain in absolute sense and each domain can have samples showing different characteristics. Following this cue, we propose Reiterative D-CGCT (RD-CGCT) that obtains better adaptation performance by reiterating multiple times over each target domain, while keeping the total number of iterations as same. RD-CGCT further improves the adaptation performance by considering more source samples than training samples in the training minibatch. Proposed RD-CGCT significantly improves the performance over D-CGCT for Office-Home and Office31 datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا