Do you want to publish a course? Click here

Unsupervised Multi-Target Domain Adaptation: An Information Theoretic Approach

74   0   0.0 ( 0 )
 Added by Behnam Gholami
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Unsupervised domain adaptation (uDA) models focus on pairwise adaptation settings where there is a single, labeled, source and a single target domain. However, in many real-world settings one seeks to adapt to multiple, but somewhat similar, target domains. Applying pairwise adaptation approaches to this setting may be suboptimal, as they fail to leverage shared information among multiple domains. In this work we propose an information theoretic approach for domain adaptation in the novel context of multiple target domains with unlabeled instances and one source domain with labeled instances. Our model aims to find a shared latent space common to all domains, while simultaneously accounting for the remaining private, domain-specific factors. Disentanglement of shared and private information is accomplished using a unified information-theoretic approach, which also serves to establish a stronger link between the latent representations and the observed data. The resulting model, accompanied by an efficient optimization algorithm, allows simultaneous adaptation from a single source to multiple target domains. We test our approach on three challenging publicly-available datasets, showing that it outperforms several popular domain adaptation methods.



rate research

Read More

Unsupervised domain adaptation (UDA) seeks to alleviate the problem of domain shift between the distribution of unlabeled data from the target domain w.r.t. labeled data from the source domain. While the single-target UDA scenario is well studied in the literature, Multi-Target Domain Adaptation (MTDA) remains largely unexplored despite its practical importance, e.g., in multi-camera video-surveillance applications. The MTDA problem can be addressed by adapting one specialized model per target domain, although this solution is too costly in many real-world applications. Blending multiple targets for MTDA has been proposed, yet this solution may lead to a reduction in model specificity and accuracy. In this paper, we propose a novel unsupervised MTDA approach to train a CNN that can generalize well across multiple target domains. Our Multi-Teacher MTDA (MT-MTDA) method relies on multi-teacher knowledge distillation (KD) to iteratively distill target domain knowledge from multiple teachers to a common student. The KD process is performed in a progressive manner, where the student is trained by each teacher on how to perform UDA for a specific target, instead of directly learning domain adapted features. Finally, instead of combining the knowledge from each teacher, MT-MTDA alternates between teachers that distill knowledge, thereby preserving the specificity of each target (teacher) when learning to adapt to the student. MT-MTDA is compared against state-of-the-art methods on several challenging UDA benchmarks, and empirical results show that our proposed model can provide a considerably higher level of accuracy across multiple target domains. Our code is available at: https://github.com/LIVIAETS/MT-MTDA
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy. However, it is not always feasible to obtain high-quality supervisory signals from users, especially for vision tasks. Unlike typical federated settings with labeled client data, we consider a more practical scenario where the distributed client data is unlabeled, and a centralized labeled dataset is available on the server. We further take the server-client and inter-client domain shifts into account and pose a domain adaptation problem with one source (centralized server data) and multiple targets (distributed client data). Within this new Federated Multi-Target Domain Adaptation (FMTDA) task, we analyze the model performance of exiting domain adaptation methods and propose an effective DualAdapt method to address the new challenges. Extensive experimental results on image classification and semantic segmentation tasks demonstrate that our method achieves high accuracy, incurs minimal communication cost, and requires low computational resources on client devices.
Most domain adaptation methods focus on single-source-single-target adaptation setting. Multi-target domain adaptation is a powerful extension in which a single classifier is learned for multiple unlabeled target domains. To build a multi-target classifier, it is crucial to effectively aggregate features from the labeled source and different unlabeled target domains. Towards this, recently introduced Domain-aware Curriculum Graph Co-Teaching (D-CGCT) exploits dual classifier head, one of which is based on the graph neural network. D-CGCT uses a sequential adaptation strategy that adapts one domain at a time starting from the target domains that are more similar to the source, assuming that the network finds it easier to adapt to such target domains. However, we argue that there is no easier domain or difficult domain in absolute sense and each domain can have samples showing different characteristics. Following this cue, we propose Reiterative D-CGCT (RD-CGCT) that obtains better adaptation performance by reiterating multiple times over each target domain, while keeping the total number of iterations as same. RD-CGCT further improves the adaptation performance by considering more source samples than training samples in the training minibatch. Proposed RD-CGCT significantly improves the performance over D-CGCT for Office-Home and Office31 datasets.
Tractable models of human perception have proved to be challenging to build. Hand-designed models such as MS-SSIM remain popular predictors of human image quality judgements due to their simplicity and speed. Recent modern deep learning approaches can perform better, but they rely on supervised data which can be costly to gather: large sets of class labels such as ImageNet, image quality ratings, or both. We combine recent advances in information-theoretic objective functions with a computational architecture informed by the physiology of the human visual system and unsupervised training on pairs of video frames, yielding our Perceptual Information Metric (PIM). We show that PIM is competitive with supervised metrics on the recent and challenging BAPPS image quality assessment dataset and outperforms them in predicting the ranking of image compression methods in CLIC 2020. We also perform qualitative experiments using the ImageNet-C dataset, and establish that PIM is robust with respect to architectural details.
Recently unsupervised domain adaptation for the semantic segmentation task has become more and more popular due to high-cost of pixel-level annotation on real-world images. However, most domain adaptation methods are only restricted to single-source-single-target pair, and can not be directly extended to multiple target domains. In this work, we propose a collaborative learning framework to achieve unsupervised multi-target domain adaptation. An unsupervised domain adaptation expert model is first trained for each source-target pair and is further encouraged to collaborate with each other through a bridge built between different target domains. These expert models are further improved by adding the regularization of making the consistent pixel-wise prediction for each sample with the same structured context. To obtain a single model that works across multiple target domains, we propose to simultaneously learn a student model which is trained to not only imitate the output of each expert on the corresponding target domain, but also to pull different expert close to each other with regularization on their weights. Extensive experiments demonstrate that the proposed method can effectively exploit rich structured information contained in both labeled source domain and multiple unlabeled target domains. Not only does it perform well across multiple target domains but also performs favorably against state-of-the-art unsupervised domain adaptation methods specially trained on a single source-target pair
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا