Do you want to publish a course? Click here

KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation

130   0   0.0 ( 0 )
 Added by Haozhe Feng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Conventional unsupervised multi-source domain adaptation (UMDA) methods assume all source domains can be accessed directly. This neglects the privacy-preserving policy, that is, all the data and computations must be kept decentralized. There exists three problems in this scenario: (1) Minimizing the domain distance requires the pairwise calculation of the data from source and target domains, which is not accessible. (2) The communication cost and privacy security limit the application of UMDA methods (e.g., the domain adversarial training). (3) Since users have no authority to check the data quality, the irrelevant or malicious source domains are more likely to appear, which causes negative transfer. In this study, we propose a privacy-preserving UMDA paradigm named Knowledge Distillation based Decentralized Domain Adaptation (KD3A), which performs domain adaptation through the knowledge distillation on models from different source domains. KD3A solves the above problems with three components: (1) A multi-source knowledge distillation method named Knowledge Vote to learn high-quality domain consensus knowledge. (2) A dynamic weighting strategy named Consensus Focus to identify both the malicious and irrelevant domains. (3) A decentralized optimization strategy for domain distance named BatchNorm MMD. The extensive experiments on DomainNet demonstrate that KD3A is robust to the negative transfer and brings a 100x reduction of communication cost compared with other decentralized UMDA methods. Moreover, our KD3A significantly outperforms state-of-the-art UMDA approaches.



rate research

Read More

Unsupervised domain adaptation (UDA) seeks to alleviate the problem of domain shift between the distribution of unlabeled data from the target domain w.r.t. labeled data from the source domain. While the single-target UDA scenario is well studied in the literature, Multi-Target Domain Adaptation (MTDA) remains largely unexplored despite its practical importance, e.g., in multi-camera video-surveillance applications. The MTDA problem can be addressed by adapting one specialized model per target domain, although this solution is too costly in many real-world applications. Blending multiple targets for MTDA has been proposed, yet this solution may lead to a reduction in model specificity and accuracy. In this paper, we propose a novel unsupervised MTDA approach to train a CNN that can generalize well across multiple target domains. Our Multi-Teacher MTDA (MT-MTDA) method relies on multi-teacher knowledge distillation (KD) to iteratively distill target domain knowledge from multiple teachers to a common student. The KD process is performed in a progressive manner, where the student is trained by each teacher on how to perform UDA for a specific target, instead of directly learning domain adapted features. Finally, instead of combining the knowledge from each teacher, MT-MTDA alternates between teachers that distill knowledge, thereby preserving the specificity of each target (teacher) when learning to adapt to the student. MT-MTDA is compared against state-of-the-art methods on several challenging UDA benchmarks, and empirical results show that our proposed model can provide a considerably higher level of accuracy across multiple target domains. Our code is available at: https://github.com/LIVIAETS/MT-MTDA
Currently, the divergence in distributions of design and operational data, and large computational complexity are limiting factors in the adoption of CNNs in real-world applications. For instance, person re-identification systems typically rely on a distributed set of cameras, where each camera has different capture conditions. This can translate to a considerable shift between source (e.g. lab setting) and target (e.g. operational camera) domains. Given the cost of annotating image data captured for fine-tuning in each target domain, unsupervised domain adaptation (UDA) has become a popular approach to adapt CNNs. Moreover, state-of-the-art deep learning models that provide a high level of accuracy often rely on architectures that are too complex for real-time applications. Although several compression and UDA approaches have recently been proposed to overcome these limitations, they do not allow optimizing a CNN to simultaneously address both. In this paper, we propose an unexplored direction -- the joint optimization of CNNs to provide a compressed model that is adapted to perform well for a given target domain. In particular, the proposed approach performs unsupervised knowledge distillation (KD) from a complex teacher model to a compact student model, by leveraging both source and target data. It also improves upon existing UDA techniques by progressively teaching the student about domain-invariant features, instead of directly adapting a compact model on target domain data. Our method is compared against state-of-the-art compression and UDA techniques, using two popular classification datasets for UDA -- Office31 and ImageClef-DA. In both datasets, results indicate that our method can achieve the highest level of accuracy while requiring a comparable or lower time complexity.
In this paper, we address the Online Unsupervised Domain Adaptation (OUDA) problem, where the target data are unlabelled and arriving sequentially. The traditional methods on the OUDA problem mainly focus on transforming each arriving target data to the source domain, and they do not sufficiently consider the temporal coherency and accumulative statistics among the arriving target data. We propose a multi-step framework for the OUDA problem, which institutes a novel method to compute the mean-target subspace inspired by the geometrical interpretation on the Euclidean space. This mean-target subspace contains accumulative temporal information among the arrived target data. Moreover, the transformation matrix computed from the mean-target subspace is applied to the next target data as a preprocessing step, aligning the target data closer to the source domain. Experiments on four datasets demonstrated the contribution of each step in our proposed multi-step OUDA framework and its performance over previous approaches.
In many real-world applications, we want to exploit multiple source datasets of similar tasks to learn a model for a different but related target dataset -- e.g., recognizing characters of a new font using a set of different fonts. While most recent research has considered ad-hoc combination rules to address this problem, we extend previous work on domain discrepancy minimization to develop a finite-sample generalization bound, and accordingly propose a theoretically justified optimization procedure. The algorithm we develop, Domain AggRegation Network (DARN), is able to effectively adjust the weight of each source domain during training to ensure relevant domains are given more importance for adaptation. We evaluate the proposed method on real-world sentiment analysis and digit recognition datasets and show that DARN can significantly outperform the state-of-the-art alternatives.
Unsupervised domain adaptation (UDA) methods for person re-identification (re-ID) aim at transferring re-ID knowledge from labeled source data to unlabeled target data. Although achieving great success, most of them only use limited data from a single-source domain for model pre-training, making the rich labeled data insufficiently exploited. To make full use of the valuable labeled data, we introduce the multi-source concept into UDA person re-ID field, where multiple source datasets are used during training. However, because of domain gaps, simply combining different datasets only brings limited improvement. In this paper, we try to address this problem from two perspectives, ie{} domain-specific view and domain-fusion view. Two constructive modules are proposed, and they are compatible with each other. First, a rectification domain-specific batch normalization (RDSBN) module is explored to simultaneously reduce domain-specific characteristics and increase the distinctiveness of person features. Second, a graph convolutional network (GCN) based multi-domain information fusion (MDIF) module is developed, which minimizes domain distances by fusing features of different domains. The proposed method outperforms state-of-the-art UDA person re-ID methods by a large margin, and even achieves comparable performance to the supervised approaches without any post-processing techniques.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا