No Arabic abstract
Carbon-enhanced metal-poor (CEMP) stars are the living fossils holding records of chemical enrichment from early generations of stars. In this work, we perform a set of numerical simulations of the enrichment from a supernova (SN) of a first generation of metal-free (Pop III) star and the gravitational collapse of the enriched cloud, considering all relevant cooling/heating processes and chemical reactions as well as the growth of dust grains. We adopt faint SN models for the first time with progenitor masses $M_{rm PopIII} = 13$--$80 {rm M}_{bigodot}$, which yield C-enhanced abundance patterns (${rm [C/Fe]} = 4.57$--$4.75$) through mixing and fallback of innermost layers of the ejecta. This model also considers the formation and destruction of dust grains. We find that the metals ejected by the SN can be partly re-accreted by the same dark matter minihalo, and carbon abundance of the enriched cloud $A({rm C}) = 3.80$--$5.06$ is lower than the abundance range of observed CEMP stars ($A({rm C}) gtrsim 6$) because the mass of the metals ejected by faint SNe is smaller than normal core-collapse SNe due to extensive fallback. We also find that cloud fragmentation is induced by gas cooling from carbonaceous grains for $M_{rm PopIII} = 13 {rm M}_{bigodot}$ even with the lowest iron abundance ${rm [Fe/H]} sim -9$. This leads to the formation of low-mass stars, and these ``giga metal-poor stars can survive until the present-day Universe and may be found by future observations.
We investigate the formation of extremely metal-poor (EMP) stars that are observed in the Galactic halo and neighboring ultra-faint dwarf galaxies. Their low metal abundances (${rm [Fe/H]} < -3$) indicate that their parent clouds were enriched by a single or several supernovae (SNe) from the first (Pop III) stars. In this study, we perform numerical simulations of the entire formation sequence of a EMP star through the feedback effects of photo-ionization and metal-enrichment by a Pop III SN. We for the first time employ a metal/dust properties calculated consistently with the progenitor model, and solve all relevant radiative cooling processes and chemical reactions including metal molecular formation and grain growth until the protostar formation. In a minihalo (MH) with mass $1.77times 10^{6} {rm M}_{bigodot}$, a Pop III star with mass $13 {rm M}_{bigodot}$ forms at redshift $z=12.1$. After its SN explosion, the shocked gas falls back into the central MH internally enriching itself. The metallicity in the recollapsing region is $2.6times 10^{-4} {rm Z}_{bigodot}$ (${rm [Fe/H]} = -3.42$). The recollapsing cloud undergoes cooling by HD, CO, and OH molecules and heating along with H$_2$ formation. Eventually by grain growth and dust cooling, knotty filaments appear in the central 100 au region with the help of turbulence driven by the SN, leading to the formation of low-mass EMP stars surviving until the present day.
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.
The level of star formation in elliptical galaxies is poorly constrained, due to difficulties in quantifying the contamination of flux-based estimates of star formation from unrelated phenomena, such as AGN and old stellar populations. We here utilise core-collapse supernovae (CCSNe) as unambiguous tracers of recent star formation in ellipticals within a cosmic volume. We firstly isolate a sample of 421 z < 0.2, r < 21.8 mag CCSNe from the SDSS-II Supernova Survey. We then introduce a Bayesian method of identifying ellipticals via their colours and morphologies in a manner unbiased by redshift and yet consistent with manual classification from Galaxy Zoo 1. We find ~ 25 % of z < 0.2 r < 20 mag galaxies in the Stripe 82 region are ellipticals (~ 28000 galaxies). In total, 36 CCSNe are found to reside in ellipticals. We demonstrate that such early-types contribute a non-negligible fraction of star formation to the present-day cosmic budget, at 11.2 $pm$ 3.1 (stat) $^{+3.0}_{-4.2}$ (sys) %. Coupling this result with the galaxy stellar mass function of ellipticals, the mean specific star formation rate (SSFR; $overline{S}$) of these systems is derived. The best-fit slope is given by log ($overline{S}(M)$/yr) = - (0.80 $pm$ 0.59) log ($M/10^{10.5}rm{M}_{odot}$) - 10.83 $pm$ 0.18. The mean SSFR for all log ($M/rm{M}_{odot}$) > 10.0 ellipticals is found to be $overline{S} = 9.2 pm 2.4$ (stat) $^{+2.7}_{-2.3}$ (sys) $times 10^{-12}$ yr$^{-1}$, which is consistent with recent estimates via SED-fitting, and is 11.8 $pm$ 3.7 (stat) $^{+3.5}_{-2.9}$ (sys) % of the mean SSFR level on the main sequence as also derived from CCSNe. We find the median optical spectrum of elliptical CCSN hosts is statistically consistent with that of a control sample of ellipticals that do not host CCSNe, implying that these SN-derived results are well-representative of the total low-z elliptical population.
CEMP-no stars, a subset of carbon enhanced metal poor (CEMP) stars ($rm [C/Fe]geq0.7$ and $rm [Fe/H]lesssim-1$) have been discovered in ultra-faint dwarf (UFD) galaxies, with $M_{rm vir} sim 10^8$ Msun and $M_{ast}sim10^3-10^4$ Msun at $z=0$, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop~III) and second (Pop~II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of $m_{rm gas}sim60$ Msun. We include enrichment from Pop~III faint supernovae (SNe), with $ E_{rm SN}=0.6times10^{51}$ erg, to understand the origin of CEMP-no stars. We confirm that Pop~III and Pop~II stars are mainly responsible for the formation of CEMP and C-normal stars respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop~III SNe with normal explosion energy ($ E_{rm SN}=1.2times10^{51}$~erg) and Pop~II enrichment, but faint SNe might also be needed to produce CEMP-no stars with $rm [C/Fe]gtrsim2$, corresponding to the absolute carbon abundance of $rm A(C)gtrsim6.0$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $rm [C/Fe]approx3-4$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $rm A(C)approx 7.0-7.5$, observed both in the MW halo and UFDs.
By means of 3D hydrodynamic simulations, we study how Type Ia supernovae (SNe) explosions affect the star formation history and the chemical properties of second generation (SG) stars in globular clusters (GC). SG stars are assumed to form once first generation asymptotic giant branch (AGB) stars start releasing their ejecta; during this phase, external gas is accreted by the system and SNe Ia begin exploding, carving hot and tenuous bubbles. Given the large uncertainty on SNe Ia explosion times, we test two different values for the delay time. We run two different models for the external gas density: in the low-density scenario with short delay time, the explosions start at the beginning of the SG star formation, halting it in its earliest phases. The external gas hardly penetrates the system, therefore most SG stars present extreme helium abundances (Y > 0.33). The low-density model with delayed SN explosions has a more extended SG star formation epoch and includes SG stars with modest helium enrichment. On the contrary, the high-density model is weakly affected by SN explosions, with a final SG mass similar to the one obtained without SNe Ia. Most of the stars form from a mix of AGB ejecta and pristine gas and have a modest helium enrichment. We show that gas from SNe Ia may produce an iron spread of $sim 0.14$ dex, consistent with the spread found in about 20% of Galactic GCs, suggesting that SNe Ia might have played a key role in the formation of this sub-sample of GCs.