No Arabic abstract
The level of star formation in elliptical galaxies is poorly constrained, due to difficulties in quantifying the contamination of flux-based estimates of star formation from unrelated phenomena, such as AGN and old stellar populations. We here utilise core-collapse supernovae (CCSNe) as unambiguous tracers of recent star formation in ellipticals within a cosmic volume. We firstly isolate a sample of 421 z < 0.2, r < 21.8 mag CCSNe from the SDSS-II Supernova Survey. We then introduce a Bayesian method of identifying ellipticals via their colours and morphologies in a manner unbiased by redshift and yet consistent with manual classification from Galaxy Zoo 1. We find ~ 25 % of z < 0.2 r < 20 mag galaxies in the Stripe 82 region are ellipticals (~ 28000 galaxies). In total, 36 CCSNe are found to reside in ellipticals. We demonstrate that such early-types contribute a non-negligible fraction of star formation to the present-day cosmic budget, at 11.2 $pm$ 3.1 (stat) $^{+3.0}_{-4.2}$ (sys) %. Coupling this result with the galaxy stellar mass function of ellipticals, the mean specific star formation rate (SSFR; $overline{S}$) of these systems is derived. The best-fit slope is given by log ($overline{S}(M)$/yr) = - (0.80 $pm$ 0.59) log ($M/10^{10.5}rm{M}_{odot}$) - 10.83 $pm$ 0.18. The mean SSFR for all log ($M/rm{M}_{odot}$) > 10.0 ellipticals is found to be $overline{S} = 9.2 pm 2.4$ (stat) $^{+2.7}_{-2.3}$ (sys) $times 10^{-12}$ yr$^{-1}$, which is consistent with recent estimates via SED-fitting, and is 11.8 $pm$ 3.7 (stat) $^{+3.5}_{-2.9}$ (sys) % of the mean SSFR level on the main sequence as also derived from CCSNe. We find the median optical spectrum of elliptical CCSN hosts is statistically consistent with that of a control sample of ellipticals that do not host CCSNe, implying that these SN-derived results are well-representative of the total low-z elliptical population.
We present an analysis of the impact of spiral density waves (DWs) on the radial and surface density distributions of core-collapse (CC) supernovae (SNe) in host galaxies with different arm classes. For the first time, we show that the corotation radius normalized surface density distribution of CC SNe (tracers of massive star formation) indicates a dip at corotation in long-armed grand-design (LGD) galaxies. The high SNe surface density just inside and outside corotation may be the sign of triggered massive star formation by the DWs. Our results may support the large-scale shock scenario induced by spiral DWs in LGD galaxies, which predicts a higher star formation efficiency around the shock fronts, avoiding the corotation region.
There is currently a severe discrepancy between theoretical models of dust formation in core-collapse supernovae (CCSNe), which predict $gtrsim 0.01$ M$_odot$ of ejecta dust forming within $sim 1000$ days, and observations at these epochs, which infer much lower masses. We demonstrate that, in the optically thin case, these low dust masses are robust despite significant observational and model uncertainties. For a sample of 11 well-observed CCSNe, no plausible model reaches carbon dust masses above $10^{-4}$ M$_odot$, or silicate masses above $sim 10^{-3}$ M$_odot$. Optically thick models can accommodate larger dust masses, but the dust must be clumped and have a low ($<0.1$) covering fraction to avoid conflict with data at optical wavelengths. These values are insufficient to reproduce the observed infrared fluxes, and the required covering fraction varies not only between SNe but between epochs for the same object. The difficulty in reconciling large dust masses with early-time observations of CCSNe, combined with well-established detections of comparably large dust masses in supernova remnants, suggests that a mechanism for late-time dust formation is necessary.
Electron capture rates on neutron-rich nuclei (A>65) were calculated within the Random Phase Approximation with partial number formalism, including allowed and forbidden transitions. The partial occupation numbers were provided as a function of temperature by Shell-Model Monte Carlo calculations, including an pairing+quadrupole interaction. Capture rates on relevent nuclei were calculated for density and temperature conditions during the core collapse of a massive star. It was found that electron captures on nuclei can compete with electron captures on free protons. Furthermore, they produce neutrinos with average energies lower than neutrinos emitted from captures on free protons, with possible consequences on the cooling of the core.
We have explored the Eu production in the Milky Way by means of a very detailed chemical evolution model. In particular, we have assumed that Eu is formed in merging neutron star (or neutron star black hole) binaries as well as in type II supernovae. We have tested the effects of several important parameters influencing the production of Eu during the merging of two neutron stars, such as: i) the time scale of coalescence, ii) the Eu yields and iii) the range of initial masses for the progenitors of the neutron stars. The yields of Eu from type II supernovae are very uncertain, more than those from coalescing neutron stars, so we have explored several possibilities. We have compared our model results with the observed rate of coalescence of neutron stars, the solar Eu abundance, the [Eu/Fe] versus [Fe/H] relation in the solar vicinity and the [Eu/H] gradient along the Galactic disc. Our main results can be summarized as follows: i) neutron star mergers can be entirely responsible for the production of Eu in the Galaxy if the coalescence time scale is no longer than 1 Myr for the bulk of binary systems, the Eu yield is around $3 times 10^{-7}$ M$_odot$, and the mass range of progenitors of neutron stars is 9-50 M$_odot$; ii) both type II supernovae and merging neutron stars can produce the right amount of Eu if the neutron star mergers produce $2 times 10^{-7}$ M$_odot$ per system and type II supernovae, with progenitors in the range 20-50 M$_odot$, produce yields of Eu of the order of $10^{-8}-10^{-9}$ M$_odot$; iii) either models with only neutron stars producing Eu or mixed ones can reproduce the observed Eu abundance gradient along the Galactic disc.
We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Supernova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find $sim$150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of $sim$900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of $sim10^{6.4}$ M$_{odot}$ by a single Schechter function with a faint-end slope of $alpha = -1.41$. Number densities are consistent with those found by the EAGLE simulations invoking a $Lambda$-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies.