Do you want to publish a course? Click here

KMT-2018-BLG-0748Lb: Sub-Saturn Microlensing Planet Orbiting an Ultracool Host

101   0   0.0 ( 0 )
 Added by Cheongho Han
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We announce the discovery of a microlensing planetary system, in which a sub-Saturn planet is orbiting an ultracool dwarf host. We detect the planetary system by analyzing the short-timescale ($t_{rm E}sim 4.4$~days) lensing event KMT-2018-BLG-0748. The central part of the light curve exhibits asymmetry due to the negative deviations in the rising part and the positive deviations in the falling part. We find that the deviations are explained by a binary-lens model with a mass ratio between the lens components of $qsim 2times 10^{-3}$. The short event timescale together with the small angular Einstein radius, $theta_{rm E}sim 0.11$~mas, indicate that the mass of the planet host is very small. The Bayesian analysis conducted under the assumption that the planet frequency is independent of the host mass indicates that the mass of the planet is $M_{rm p}=0.18^{+0.29}_{-0.10}~M_{rm J}$, and the mass of the host, $M_{rm h}= 0.087^{+0.138}_{-0.047}~M_odot$, is near the star/brown dwarf boundary, but the estimated host mass is sensitive to the assumption about the planet hosting probability. High-resolution follow-up observations would lead to revealing the nature of the planet host.



rate research

Read More

We aim to find missing microlensing planets hidden in the unanalyzed lensing events of previous survey data. For this purpose, we conduct a systematic inspection of high-magnification microlensing events, with peak magnifications $A_{rm peak}gtrsim 30$, in the data collected from high-cadence surveys in and before the 2018 season. From this investigation, we identify an anomaly in the lensing light curve of the event KMT-2018-BLG-1025. The analysis of the light curve indicates that the anomaly is caused by a very low mass-ratio companion to the lens. We identify three degenerate solutions, in which the ambiguity between a pair of solutions (solutions B) is caused by the previously known close--wide degeneracy, and the degeneracy between these and the other solution (solution A) is a new type that has not been reported before. The estimated mass ratio between the planet and host is $qsim 0.8times 10^{-4}$ for the solution A and $qsim 1.6times 10^{-4}$ for the solutions B. From the Bayesian analysis conducted with measured observables, we estimate that the masses of the planet and host and the distance to the lens are $(M_{rm p}, M_{rm h}, D_{rm L})sim (6.1~M_oplus, 0.22~M_odot, 6.7~{rm kpc})$ for the solution A and $sim (4.4~M_oplus, 0.08~M_odot, 7.5~{rm kpc})$ for the solutions B. The planet mass is in the category of a super-Earth regardless of the solutions, making the planet the eleventh super-Earth planet, with masses lying between those of Earth and the Solar systems ice giants, discovered by microlensing.
We report the discovery and analysis of a sub-Saturn-mass planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is $q = (2.65 pm 0.16) times 10^{-3}$. The ground-based observations yield a constraint on the angular Einstein radius $theta_{rm E}$, and the microlens parallax $pi_{rm E}$ is measured from the joint analysis of the Spitzer and ground-based observations, which suggests that the host star is most likely to be a very low-mass dwarf. A full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{rm planet} = 0.22_{-0.06}^{+0.19}~M_{J}$ planet orbiting an $M_{rm host} = 0.080_{-0.020}^{+0.080}~M_odot$, at a distance of $D_{rm L} = 4.42_{-1.23}^{+1.73}$ kpc. The projected planet-host separation is $r_perp = 1.27_{-0.29}^{+0.45}$ AU, implying that the planet is located beyond the snowline of the host star. However, because of systematics in the Spitzer photometry, there is ambiguity in the parallax measurement, so the system could be more massive and farther away.
We report the discovery and the analysis of the short (tE < 5 days) planetary microlensing event, OGLE-2015-BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment (OGLE), and the planetary anomaly (at I ~ 19) was captured by The Korea Microlensing Telescope Network (KMTNet). The event has three surviving planetary models that explain the observed light curves, with planet-host mass ratio q ~ 5.4 * 10^{-3}, 4.5 * 10^{-3} and 4.5 * 10^{-2}, respectively. The first model is the best-fit model, while the second model is disfavored by Deltachi^2 ~ 3. The last model is strongly disfavored by Deltachi^2 ~ 15 but not ruled out. A Bayesian analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown dwarf. The source-lens relative proper motion is mu_rel ~ 9 mas/yr, so the source and lens could be resolved by current adaptive-optics (AO) instruments in 2021 if the lens is luminous.
We present the analysis of the microlensing event KMT-2018-BLG-1743. The light curve of the event, with a peak magnification $A_{rm peak}sim 800$, exhibits two anomaly features, one around the peak and the other on the falling side of the light curve. An interpretation with a binary lens and a single source (2L1S) cannot describe the anomalies. By conducting additional modeling that includes an extra lens (3L1S) or an extra source (2L2S) relative to a 2L1S interpretation, we find that 2L2S interpretations with a planetary lens system and a binary source best explain the observed light curve with $Deltachi^2sim 188$ and $sim 91$ over the 2L1S and 3L1S solutions, respectively. Assuming that these $Deltachi^2$ values are adequate for distinguishing the models, the event is the fourth 2L2S event and the second 2L2S planetary event. The 2L2S interpretations are subject to a degeneracy, resulting in two solutions with $s>1.0$ (wide solution) and $s<1.0$ (close solution). The masses of the lens components and the distance to the lens are $(M_{rm host}/M_odot, M_{rm planet}/M_{rm J}, D_{rm L}/{rm kpc}) sim (0.19^{+0.27}_{-0.111}, 0.25^{+0.34}_{-0.14}, 6.48^{+0.94}_{-1.03})$ and $sim (0.42^{+0.34}_{-0.25}, 1.61^{+1.30}_{-0.97}, 6.04^{+0.93}_{-1.27})$ according to the wide and close solutions, respectively. The source is a binary composed of an early G dwarf and a mid M dwarf. The values of the relative lens-source proper motion expected from the two degenerate solutions, $mu_{rm wide}sim 2.3 $mas yr$^{-1}$ and $mu_{rm close} sim 4.1 $mas yr$^{-1}$, are substantially different, and thus the degeneracy can be broken by resolving the lens and source from future high-resolution imaging observations.
We report the discovery of a low mass-ratio planet $(q = 1.3times10^{-4})$, i.e., 2.5 times higher than the Neptune/Sun ratio. The planetary system was discovered from the analysis of the KMT-2017-BLG-0165 microlensing event, which has an obvious short-term deviation from the underlying light curve produced by the host of the planet. Although the fit improvement with the microlens parallax effect is relatively low, one component of the parallax vector is strongly constrained from the light curve, making it possible to narrow down the uncertainties of the lens physical properties. A Bayesian analysis yields that the planet has a super-Neptune mass $(M_{2}=34_{-12}^{+15}~M_{oplus})$ orbiting a Sun-like star $(M_{1}=0.76_{-0.27}^{+0.34}~M_{odot})$ located at $4.5~{rm kpc}$. The blended light is consistent with these host properties. The projected planet-host separation is $a_{bot}={3.45_{-0.95}^{+0.98}}~{rm AU}$, implying that the planet is located outside the snowline of the host, i.e., $a_{sl}sim2.1~{rm AU}$. KMT-2017-BLG-0165Lb is the sixteenth microlensing planet with mass ratio $q<3times10^{-4}$. Using the fifteen of these planets with unambiguous mass-ratio measurements, we apply a likelihood analysis to investigate the form of the mass-ratio function in this regime. If we adopt a broken power law for the form of this function, then the break is at $q_{rm br}simeq0.55times10^{-4}$, which is much lower than previously estimated. Moreover, the change of the power law slope, $zeta>3.3$ is quite severe. Alternatively, the distribution is also suggestive of a pile-up of planets at Neptune-like mass ratios, below which there is a dramatic drop in frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا