Do you want to publish a course? Click here

OGLE-2018-BLG-0799Lb: a Sub-Saturn-Mass Planet Orbiting a Very Low Mass Dwarf

104   0   0.0 ( 0 )
 Added by Weicheng Zang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery and analysis of a sub-Saturn-mass planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is $q = (2.65 pm 0.16) times 10^{-3}$. The ground-based observations yield a constraint on the angular Einstein radius $theta_{rm E}$, and the microlens parallax $pi_{rm E}$ is measured from the joint analysis of the Spitzer and ground-based observations, which suggests that the host star is most likely to be a very low-mass dwarf. A full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{rm planet} = 0.22_{-0.06}^{+0.19}~M_{J}$ planet orbiting an $M_{rm host} = 0.080_{-0.020}^{+0.080}~M_odot$, at a distance of $D_{rm L} = 4.42_{-1.23}^{+1.73}$ kpc. The projected planet-host separation is $r_perp = 1.27_{-0.29}^{+0.45}$ AU, implying that the planet is located beyond the snowline of the host star. However, because of systematics in the Spitzer photometry, there is ambiguity in the parallax measurement, so the system could be more massive and farther away.



rate research

Read More

We report the analysis of planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the $Spitzer$ Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio of $q = (6.9 pm 0.2) times 10^{-5}$, which is near the peak of the wide-orbit exoplanet mass-ratio distribution. We estimate the host star and planet masses with a Bayesian analysis using the measured angular Einstein radius under the assumption that stars of all masses have an equal probability to host this planet. The flux variation observed by $Spitzer$ was marginal, but still places a constraint on the microlens parallax. Imposing a conservative constraint that this flux variation should be $Delta f_{rm Spz} < 4$ instrumental flux units indicates a host mass of $M_{rm host} = 0.37^{+0.35}_{-0.21} M_odot$ and a planet mass of $m_{rm p} = 8.4^{+7.9}_{-4.7} M_oplus$. A Bayesian analysis including the full parallax constraint from $Spitzer$ suggests smaller host star and planet masses of $M_{rm host} = 0.091^{+0.064}_{-0.018} M_odot$ and $m_{rm p} = 2.1^{+1.5}_{-0.4} M_oplus$, respectively. Future high-resolution imaging observations with $HST$ or ELTs could distinguish between these two scenarios and help to reveal the planetary system properties in more detail.
We aim to find missing microlensing planets hidden in the unanalyzed lensing events of previous survey data. For this purpose, we conduct a systematic inspection of high-magnification microlensing events, with peak magnifications $A_{rm peak}gtrsim 30$, in the data collected from high-cadence surveys in and before the 2018 season. From this investigation, we identify an anomaly in the lensing light curve of the event KMT-2018-BLG-1025. The analysis of the light curve indicates that the anomaly is caused by a very low mass-ratio companion to the lens. We identify three degenerate solutions, in which the ambiguity between a pair of solutions (solutions B) is caused by the previously known close--wide degeneracy, and the degeneracy between these and the other solution (solution A) is a new type that has not been reported before. The estimated mass ratio between the planet and host is $qsim 0.8times 10^{-4}$ for the solution A and $qsim 1.6times 10^{-4}$ for the solutions B. From the Bayesian analysis conducted with measured observables, we estimate that the masses of the planet and host and the distance to the lens are $(M_{rm p}, M_{rm h}, D_{rm L})sim (6.1~M_oplus, 0.22~M_odot, 6.7~{rm kpc})$ for the solution A and $sim (4.4~M_oplus, 0.08~M_odot, 7.5~{rm kpc})$ for the solutions B. The planet mass is in the category of a super-Earth regardless of the solutions, making the planet the eleventh super-Earth planet, with masses lying between those of Earth and the Solar systems ice giants, discovered by microlensing.
We present the analysis of the microlensing event OGLE-2018-BLG-1428, which has a short-duration ($sim 1$ day) caustic-crossing anomaly. The event was caused by a planetary lens system with planet/host mass ratio $q=1.7times10^{-3}$. Thanks to the detection of the caustic-crossing anomaly, the finite source effect was well measured, but the microlens parallax was not constrained due to the relatively short timescale ($t_{rm E}=24$ days). From a Bayesian analysis, we find that the host star is a dwarf star $M_{rm host}=0.43^{+0.33}_{-0.22} M_{odot}$ at a distance $D_{rm L}=6.22^{+1.03}_{-1.51} {rm kpc}$ and the planet is a Jovian-mass planet $M_{rm p}=0.77^{+0.77}_{-0.53} M_{rm J}$ with a projected separation $a_{perp}=3.30^{+0.59}_{-0.83} {rm au}$. The planet orbits beyond the snow line of the host star. Considering the relative lens-source proper motion of $mu_{rm rel} = 5.58 pm 0.38 rm mas yr^{-1}$, the lens can be resolved by adaptive optics with a 30m telescope in the future.
82 - Y. Hirao , A. Udalski , T. Sumi 2016
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58pm0.15)times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{rm L}=0.29_{-0.16}^{+0.33} M_{odot}$ located at $D_{rm L}=6.7_{-1.2}^{+1.1} {rm kpc}$ away from the Earth and the companions mass is $m_{rm P}=0.47_{-0.26}^{+0.54} M_{rm Jup}$. The projected planet-host separation is $a_{perp}=1.6_{-0.3}^{+0.4} {rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M-dwarf and such systems are commonly detected by gravitational microlensing. This adds an another example of a possible pileup of sub-Jupiters $(0.2 < m_{rm P}/M_{rm Jup} < 1)$ in contrast to a lack of Jupiters ($sim 1 - 2 M_{rm Jup}$) around M-dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M-dwarfs.
We announce the discovery of a microlensing planetary system, in which a sub-Saturn planet is orbiting an ultracool dwarf host. We detect the planetary system by analyzing the short-timescale ($t_{rm E}sim 4.4$~days) lensing event KMT-2018-BLG-0748. The central part of the light curve exhibits asymmetry due to the negative deviations in the rising part and the positive deviations in the falling part. We find that the deviations are explained by a binary-lens model with a mass ratio between the lens components of $qsim 2times 10^{-3}$. The short event timescale together with the small angular Einstein radius, $theta_{rm E}sim 0.11$~mas, indicate that the mass of the planet host is very small. The Bayesian analysis conducted under the assumption that the planet frequency is independent of the host mass indicates that the mass of the planet is $M_{rm p}=0.18^{+0.29}_{-0.10}~M_{rm J}$, and the mass of the host, $M_{rm h}= 0.087^{+0.138}_{-0.047}~M_odot$, is near the star/brown dwarf boundary, but the estimated host mass is sensitive to the assumption about the planet hosting probability. High-resolution follow-up observations would lead to revealing the nature of the planet host.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا