No Arabic abstract
In condensed matter physics, non-Abelian statistics for Majorana zero modes (or Majorana Fermions) is very important, really exotic, and completely robust. The race for searching Majorana zero modes and verifying the corresponding non-Abelian statistics becomes an important frontier in condensed matter physics. In this letter, we generalize the Majorana zero modes to non-Hermitian (NH) topological systems that show universal but quite different properties from their Hermitian counterparts. Based on the NH Majorana zero modes, the orthogonal and nonlocal Majorana qubits are well defined. In particular, the non-Abelian statistics for these NH Majorana zero modes become anomalous, which is different from the usual non-Abelian statistics. The usual Ivanovs braiding operator for two Majorana modes is generalized to a non-Hermitian Ivanovs braiding perator. The one-dimensional NH Kitaev model is taken as an example to numerically verify the anomalous non-Abelian statistics for two NH Majorana zero modes. The numerical results are exactly consistent with the theoretical prediction. With the help of braiding these two zero modes, the $pi/8$ gate can be reached and thus universal topological quantum computation becomes possible.
We investigate the number-anomalous of the Majorana zero modes in the non-Hermitian Kitaev chain, whose hopping and superconductor paring strength are both imbalanced. We find that the combination of two imbalanced non-Hermitian terms can induce defective Majorana edge states, which means one of the two localized edge states will disappear due to the non-Hermitian suppression effect. As a result, the conventional bulk-boundary correspondence is broken down. Besides, the defective edge states are mapped to the ground states of non-Hermitian transverse field Ising model, and the global phase diagrams of ferromagnetic-antiferromagnetic crossover for ground states are given. Our work, for the first time, reveal the break of topological robustness for the Majorana zero modes, which predict more novel effects both in topological material and in non-Hermitian physics.
Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover in theory the unitary symmetry-protected non-Abelian statisitcs of MZMs and propose the experimental realization. We show that braiding two vortices with each hosting $N$ unitary symmetry-protected MZMs generically reduces to $N$ independent sectors, with each sector braiding two different Majorana modes. This renders the unitary symmetry-protected non-Abelian statistics. As a concrete example, we demonstrate the proposed non-Abelian statistics in a spin-triplet TSC which hosts two MZMs at each vortex and, interestingly, can be precisely mapped to a quantum anomalous Hall insulator. Thus the unitary symmetry-protected non-Abelian statistics can be verified in the latter insulating phase, with the application to realizing various topological quantum gates being studied. Finally, we propose a novel experimental scheme to realize the present study in an optical Raman lattice. Our work opens a new route for Majorana-based topological quantum computation.
We provide a current perspective on the rapidly developing field of Majorana zero modes in solid state systems. We emphasize the theoretical prediction, experimental realization, and potential use of Majorana zero modes in future information processing devices through braiding-based topological quantum computation. Well-separated Majorana zero modes should manifest non-Abelian braiding statistics suitable for unitary gate operations for topological quantum computation. Recent experimental work, following earlier theoretical predictions, has shown specific signatures consistent with the existence of Majorana modes localized at the ends of semiconductor nanowires in the presence of superconducting proximity effect. We discuss the experimental findings and their theoretical analyses, and provide a perspective on the extent to which the observations indicate the existence of anyonic Majorana zero modes in solid state systems. We also discuss fractional quantum Hall systems (the 5/2 state) in this context. We describe proposed schemes for carrying out braiding with Majorana zero modes as well as the necessary steps for implementing topological quantum computation.
We show that partially separated Andreev bound states (ps-ABSs), comprised of pairs of overlapping Majorana bound states (MBSs) emerging in quantum dot-semiconductor-superconductor heterostructures, produce robust zero bias conductance plateaus in end-of-wire charge tunneling experiments. These plateaus remain quantized at $2e^2/h$ over large ranges of experimental control parameters. In light of recent experiments reporting the observation of robust $2e^2/h$-quantized conductance plateaus in local charge tunneling experiments, we perform extensive numerical calculations to explicitly show that such quantized conductance plateaus, which are obtained by varying control parameters such as the tunnel barrier height, the super gate potential, and the applied magnetic field, can arise as a result of the existence of ps-ABSs. Because ps-ABSs can form rather generically in the topologically trivial regime, even in the absence of disorder, our results suggest that the observation of a robust quantized conductance plateau does not represent sufficient evidence to demonstrate the existence of non-Abelian topologically-protected Majorana zero modes localized at the opposite ends of a wire.
We introduce non-Hermitian generalizations of Majorana zero modes (MZMs) which appear in the topological phase of a weakly dissipative Kitaev chain coupled to a Markovian bath. Notably, the presence of MZMs ensures that the steady state in the absence of decoherence events is two-fold degenerate. Within a stochastic wavefunction approach, the effective Hamiltonian governing the coherent, non-unitary dynamics retains BDI classification of the closed limit, but belongs to one of four non-Hermitian flavors of the ten-fold way. We argue for the stability of MZMs due to a generalization of particle-hole symmetry, and uncover the resulting topological phase diagram. Qualitative features of our study generalize to two-dimensional chiral superconductors. The dissipative superconducting chain can be mapped to an Ising model in a complex transverse field, and we discuss potential signatures of the degeneracy.