Do you want to publish a course? Click here

Non-Hermitian Majorana modes protect degenerate steady states

237   0   0.0 ( 0 )
 Added by Simon Lieu
 Publication date 2019
  fields Physics
and research's language is English
 Authors Simon Lieu




Ask ChatGPT about the research

We introduce non-Hermitian generalizations of Majorana zero modes (MZMs) which appear in the topological phase of a weakly dissipative Kitaev chain coupled to a Markovian bath. Notably, the presence of MZMs ensures that the steady state in the absence of decoherence events is two-fold degenerate. Within a stochastic wavefunction approach, the effective Hamiltonian governing the coherent, non-unitary dynamics retains BDI classification of the closed limit, but belongs to one of four non-Hermitian flavors of the ten-fold way. We argue for the stability of MZMs due to a generalization of particle-hole symmetry, and uncover the resulting topological phase diagram. Qualitative features of our study generalize to two-dimensional chiral superconductors. The dissipative superconducting chain can be mapped to an Ising model in a complex transverse field, and we discuss potential signatures of the degeneracy.



rate research

Read More

114 - Tong Liu , Shujie Cheng , Hao Guo 2020
We study a one-dimensional $p$-wave superconductor subject to non-Hermitian quasiperiodic potentials. Although the existence of the non-Hermiticity, the Majorana zero mode is still robust against the disorder perturbation. The analytic topological phase boundary is verified by calculating the energy gap closing point and the topological invariant. Furthermore, we investigate the localized properties of this model, revealing that the topological phase transition is accompanied with the Anderson localization phase transition, and a wide critical phase emerges with amplitude increments of the non-Hermitian quasiperiodic potentials. Finally, we numerically uncover a non-conventional real-complex transition of the energy spectrum, which is different from the conventional $mathcal{PT}$ symmetric transition.
Non-Hermitian skin effect, namely that the eigenvalues and eigenstates of a non-Hermitian tight-binding Hamiltonian have significant differences under open or periodic boundary conditions, is a remarkable phenomenon of non-Hermitian systems. Inspired by the presence of the non-Hermitian skin effect, we study the evolution of wave-packets in non-Hermitian systems, which can be determined using the single-particle Greens function. Surprisingly, we find that in the thermodynamical limit, the Greens function does not depend on boundary conditions, despite the presence of skin effect. We proffer a general proof for this statement in arbitrary dimension with finite hopping range, with an explicit illustration in the non-Hermitian Su-Schrieffer-Heeger model. We also explore its applications in non-interacting open quantum systems described by the master equation, where we demonstrate that the evolution of the density matrix is independent of the boundary condition.
110 - Yifei Yi , Zhesen Yang 2020
In this paper, we study the conditions under which on-site dissipations can induce non-Hermitian skin modes in non-Hermitian systems. When the original Hermitian Hamiltonian has spinless time-reversal symmetry, it is impossible to have skin modes; on the other hand, if the Hermitian Hamiltonian has spinful time-reversal symmetry, skin modes can be induced by on-site dissipations under certain circumstance. As a concrete example, we employ the Rice-Mele model to illustrate our results. Furthermore, we predict that the skin modes can be detected by the chiral tunneling effect, that is, the tunneling favors the direction where the skin modes are localized. Our work reveals a no-go theorem for the emergence of skin modes, and paves the way for searching for quantum systems with skin modes and studying their novel physical responses.
155 - Haiping Hu , Erhai Zhao 2020
Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only much later was the connection between knot invariants and Wilson loops in topological quantum field theory discovered. Here we show that knots tied by the eigenenergy strings provide a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A $mathbb{Z}_2$ knot invariant, the global biorthogonal Berry phase $Q$ as the sum of the Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We show the transition between two phases characterized by distinct knots occur through exceptional points and come in two types. We further develop an algorithm to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature for example the Hopf link, the trefoil knot, the figure-8 knot and the Whitehead link.
We predict the existence of non-Hermitian topologically protected end states in a one-dimensional exciton-polariton condensate lattice, where topological transitions are driven by the laser pump pattern. We show that the number of end states can be described by a Chern number and a topological invariant based on the Wilson loop. We find that such transitions arise due to {it enforced exceptional points} which can be predicted directly from the bulk Bloch wave functions. This allows us to establish a new type of bulk-boundary correspondence for non-Hermitian systems and to compute the phase diagram of an open chain analytically. Finally, we demonstrate topological lasing of a single end-mode in a realistic model of a microcavity lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا