Do you want to publish a course? Click here

Crystal orientation dictated epitaxy of ultrawide bandgap 5.4-8.6 eV $alpha$-(AlGa)$_2$O$_3$ on m-plane sapphire

88   0   0.0 ( 0 )
 Added by Riena Jinno
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-wide bandgap semiconductors are ushering in the next generation of high power electronics. The correct crystal orientation can make or break successful epitaxy of such semiconductors. Here it is discovered that single-crystalline layers of $alpha$-(AlGa)$_2$O$_3$ alloys spanning bandgaps of 5.4 - 8.6 eV can be grown by molecular beam epitaxy. The key step is found to be the use of m-plane sapphire crystal. The phase transition of the epitaxial layers from the $alpha$- to the narrower bandgap $beta$-phase is catalyzed by the c-plane of the crystal. Because the c-plane is orthogonal to the growth front of the m-plane surface of the crystal, the narrower bandgap pathways are eliminated, revealing a route to much wider bandgap materials with structural purity. The resulting energy bandgaps of the epitaxial layers span a range beyond the reach of all other semiconductor families, heralding the successful epitaxial stabilization of the largest bandgap materials family to date.



rate research

Read More

Gallium oxide films were grown by HVPE on (0001) sapphire substrates with and without $alpha$-Cr$_2$O$_3$ buffer produced by RF magnetron sputtering. Deposition on bare sapphire substrates resulted in a mixture of $alpha$-Ga$_2$O$_3$ and $epsilon$-Ga$_2$O$_3$ phases with a dislocation density of about $2cdot10^{10}$ cm$^{-2}$. The insertion of $alpha$-Ga$_2$O$_3$ buffer layers resulted in phase-pure $alpha$-Ga$_2$O$_3$ films and a fourfold reduction of the dislocation density to $5 cdot 10^9$ cm$^{-2}$.
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the starting solution at a substrate temperature of 450 deg C. The film was found to be crystalline and of alpha phase with an on axis full width at half maximum of 92 arcsec as confirmed from X ray diffraction scans. The Taucs plot extracted from absorption spectroscopy exhibited two transitions in the UV regime at 5.3 eV and 5.6 eV, corresponding to excitonic absorption and direct band to band transition respectively. The binding energy of exciton was extracted to be 114 meV from spectral responsivity measurements. Further, metal semiconductor metal photodetectors with lateral inter digitated geometry were fabricated on the film. A sharp band edge was observed at 230 nm in the spectral response with peak responsivity of around 1 Amperes per Watt at a bias of 20 V. The UV to visible rejection ratio was found to be around 100 while the dark current was measured to be around 0.1 nA.
The epitaxial growth of technically-important $beta$-Ga$_2$O$_3$ semiconductor thin films have not been realized on flexible substrates due to limitations by the high-temperature crystallization conditions and the lattice-matching requirements. In this report, for the first time single crystal $beta$-Ga$_2$O$_3$(-201) thin films is epitaxially grown on the flexible CeO2 (001)-buffered hastelloy tape. The results indicate that CeO$_2$ (001) has a small bi-axial lattice mismatch with $beta$-Ga$_2$O$_3$ (-201), thus inducing a simultaneous double-domain epitaxial growth. Flexible photodetectors are fabricated based on the epitaxial $beta$-Ga$_2$O$_3$ coated tapes. Measurements show that the obtained photodetectors have a responsivity of 40 mA/W, with an on/off ratio reaching 1000 under 250 nm incident light and 5 V bias voltage. Such photoelectrical performance is already within the mainstream level of the $beta$-Ga$_2$O$_3$ based photodetectors by using the conventional rigid single crystal substrates; and more importantly remained robust against more than 1000 cycles of bending tests. In addition, the epitaxy technique described in the report also paves the way for the fabrication of a wide range of flexible epitaxial film devices that utilize the materials with lattice parameters similar to $beta$-Ga$_2$O$_3$, including GaN, AlN and SiC.
The suitability of Ti as a band gap modifier for $alpha$-Ga$_2$O$_3$ was investigated, taking advantage of the isostructural {alpha}-phases and high band gap difference between Ti$_2$O$_3$ and Ga$_2$O$_3$. Films of Ti:Ga$_2$O$_3$, with a range of Ti concentrations, synthesized by atomic layer deposition on sapphire substrates, were characterized to determine how crystallinity and band gap vary with composition for this alloy. The deposition of crystalline $alpha$-(Ti$_x$Ga$_{1-x}$)$_2$O$_3$ films with up to x~5.3%, was demonstrated. At greater Ti concentration, the films became amorphous. Modification of the band gap over a range of ~ 270 meV was achieved across the crystalline films and a maximum change in band gap from pure $alpha$-Ga$_2$O$_3$ of ~1.1 eV was observed for the films of greatest Ti fraction (61% Ti relative to Ga). The ability to maintain a crystalline phase at low fractions of Ti, accompanied by a significant modification in band gap shows promise for band gap engineering and the enhancement in versatility of application of $alpha$-Ga$_2$O$_3$ in optoelectronic devices.
We report the optical, electrical, and structural properties of Si doped $beta$-Ga$_2$O$_3$ films grown on (010)-oriented $beta$-Ga$_2$O$_3$ substrate via HVPE. Our results show that, despite growth rates that are more than one order of magnitude faster than MOCVD, films with mobility values of up to 95 cm$^2$V$^{-1}$s$^{-1}$ at a carrier concentration of 1.3$times$10$^{17}$ cm$^{-3}$ can be achieved using this technique, with all Si-doped samples showing n-type behavior with carrier concentrations in the range of 10$^{17}$ to 10$^{19}$ cm$^{-3}$. All samples showed similar room temperature photoluminescence, with only the samples with the lowest carrier concentration showing the presence of a blue luminescence, and the Raman spectra exhibiting only phonon modes that belong to $beta$-Ga$_2$O$_3$, indicating that the Ga$_2$O$_3$ films are phase pure and of high crystal quality. We further evaluated the epitaxial quality of the films by carrying out grazing incidence X-ray scattering measurements, which allowed us to discriminate the bulk and film contributions. Finally, MOS capacitors were fabricated using ALD HfO$_2$ to perform C-V measurements. The carrier concentration and dielectric values extracted from the C-V characteristics are in good agreement with Hall probe measurements. These results indicate that HVPE has a strong potential to yield device-quality $beta$-Ga$_2$O$_3$ films that can be utilized to develop vertical devices for high-power electronics applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا