No Arabic abstract
We report the optical, electrical, and structural properties of Si doped $beta$-Ga$_2$O$_3$ films grown on (010)-oriented $beta$-Ga$_2$O$_3$ substrate via HVPE. Our results show that, despite growth rates that are more than one order of magnitude faster than MOCVD, films with mobility values of up to 95 cm$^2$V$^{-1}$s$^{-1}$ at a carrier concentration of 1.3$times$10$^{17}$ cm$^{-3}$ can be achieved using this technique, with all Si-doped samples showing n-type behavior with carrier concentrations in the range of 10$^{17}$ to 10$^{19}$ cm$^{-3}$. All samples showed similar room temperature photoluminescence, with only the samples with the lowest carrier concentration showing the presence of a blue luminescence, and the Raman spectra exhibiting only phonon modes that belong to $beta$-Ga$_2$O$_3$, indicating that the Ga$_2$O$_3$ films are phase pure and of high crystal quality. We further evaluated the epitaxial quality of the films by carrying out grazing incidence X-ray scattering measurements, which allowed us to discriminate the bulk and film contributions. Finally, MOS capacitors were fabricated using ALD HfO$_2$ to perform C-V measurements. The carrier concentration and dielectric values extracted from the C-V characteristics are in good agreement with Hall probe measurements. These results indicate that HVPE has a strong potential to yield device-quality $beta$-Ga$_2$O$_3$ films that can be utilized to develop vertical devices for high-power electronics applications.
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the starting solution at a substrate temperature of 450 deg C. The film was found to be crystalline and of alpha phase with an on axis full width at half maximum of 92 arcsec as confirmed from X ray diffraction scans. The Taucs plot extracted from absorption spectroscopy exhibited two transitions in the UV regime at 5.3 eV and 5.6 eV, corresponding to excitonic absorption and direct band to band transition respectively. The binding energy of exciton was extracted to be 114 meV from spectral responsivity measurements. Further, metal semiconductor metal photodetectors with lateral inter digitated geometry were fabricated on the film. A sharp band edge was observed at 230 nm in the spectral response with peak responsivity of around 1 Amperes per Watt at a bias of 20 V. The UV to visible rejection ratio was found to be around 100 while the dark current was measured to be around 0.1 nA.
We report on low-temperature MOVPE growth of silicon delta-doped b{eta}-Ga2O3 films with low FWHM. The as-grown films are characterized using Secondary-ion mass spectroscopy, Capacitance-Voltage and Hall techniques. SIMS measurements show that surface segregation is the chief cause of large FWHM in MOVPE-grown films. The surface segregation coefficient (R) is observed to reduce with reduction in the growth temperature. Films grown at 600 {deg}C show an electron concentration of 9.7 x 1012 cm-2 and a FWHM of 3.2 nm. High resolution scanning/transmission electron microscopy of the epitaxial film did not reveal any significant observable degradation in crystal quality of the delta sheet and surrounding regions. Hall measurements of delta-doped film on Fe-doped substrate showed a sheet charge density of 6.1 x 1012 cm-2 and carrier mobility of 83 cm2/V. s. Realization of sharp delta doping profiles in MOVPE-grown b{eta}-Ga2O3 is promising for high performance device applications.
Although a cubic phase of Mn$_3$Ga with an antiferromagnetic order has been theoretically predicted, it has not been experimentally verified in a bulk or film form. Here, we report the structural, magnetic, and electrical properties of antiferromagnetic cubic Mn$_3$Ga (C-Mn$_3$Ga) thin films, in comparison with ferrimagnetic tetragonal Mn$_3$Ga (T-Mn3Ga). The structural analyses reveal that C-Mn$_3$Ga is hetero-epitaxially grown on MgO substrate with the Cu$_3$Au-type cubic structure, which transforms to T-Mn$_3$Ga as the RF sputtering power increases. The magnetic and magnetotransport data show the antiferromagnetic transition at T$_N$ = 400 K for C-Mn$_3$Ga and the ferrimagnetic transition at T$_C$ = 820 K for T-Mn$_3$Ga. Furthermore, we find that the antiferromagnetic C-Mn$_3$Ga exhibits a higher electrical resistivity than the ferrimagnetic T-Mn$_3$Ga, which can be understood by spin-dependent scattering mechanism.
$beta$-Ga$_2$O$_3$ is a next-generation ultra wide bandgap semiconductor (E$_g$ = 4.8 eV to 4.9 eV) that can be homoepitaxially grown on commercial substrates, enabling next-generation power electronic devices among other important applications. Analyzing the quality of deposited homoepitaxial layers used in such devices is challenging, in part due to the large probing depth in traditional x-ray diffraction (XRD) and also due to the surface-sensitive nature of atomic force microscopy (AFM). Here, a combination of evanescent grazing-incidence skew asymmetric XRD and AFM are investigated as an approach to effectively characterize the quality of homoepitaxial $beta$-Ga$_2$O$_3$ layers grown by molecular beam epitaxy at a variety of Ga/O flux ratios. Accounting for both structure and morphology, optimal films are achieved at a Ga/O ratio of $sim$1.15, a conclusion that would not be possible to achieve by either XRD or AFM methods alone. Finally, fabricated Schottky barrier diodes with thicker homoepitaxial layers are characterized by $J-V$ and $C-V$ measurements, revealing an unintentional doping density of 4.3 $times$ 10$^{16}$ cm$^{-3}$ - 2 $times$ 10$^{17}$ cm$^{-3}$ in the epilayer. These results demonstrate the importance of complementary measurement methods for improving the quality of the $beta$-Ga$_2$O$_3$ homoepitaxial layers used in power electronic and other devices.
$beta$-Ga$_2$O$_3$ is an ultra-wide bandgap semiconductor and is thus expected to be optically transparent to light of sub-bandgap wavelengths well into the ultraviolet. Contrary to this expectation, it is found here that free electrons in n-doped $beta$-Ga$_2$O$_3$ absorb light from the IR to the UV wavelength range via intra- and inter-conduction band optical transitions. Intra-conduction band absorption occurs via an indirect optical phonon mediated process with a $1/omega^{3}$ dependence in the visible to near-IR wavelength range. This frequency dependence markedly differs from the $1/omega^{2}$ dependence predicted by the Drude model of free-carrier absorption. The inter-conduction band absorption between the lowest conduction band and a higher conduction band occurs via a direct optical process at $lambda sim 349$ nm (3.55 eV). Steady state and ultrafast optical spectroscopy measurements unambiguously identify both these absorption processes and enable quantitative measurements of the inter-conduction band energy, and the frequency dependence of absorption. Whereas the intra-conduction band absorption does not depend on light polarization, inter-conduction band absorption is found to be strongly polarization dependent. The experimental observations, in excellent agreement with recent theoretical predictions for $beta$-Ga$_2$O$_3$, provide important limits of sub-bandgap transparency for optoelectronics in the deep-UV to visible wavelength range, and are also of importance for high electric field transport effects in this emerging semiconductor.