Do you want to publish a course? Click here

A deep reinforcement learning model based on deterministic policy gradient for collective neural crest cell migration

122   0   0.0 ( 0 )
 Added by George Lykotrafitis
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

Modeling cell interactions such as co-attraction and contact-inhibition of locomotion is essential for understanding collective cell migration. Here, we propose a novel deep reinforcement learning model for collective neural crest cell migration. We apply the deep deterministic policy gradient algorithm in association with a particle dynamics simulation environment to train agents to determine the migration path. Because of the different migration mechanisms of leader and follower neural crest cells, we train two types of agents (leaders and followers) to learn the collective cell migration behavior. For a leader agent, we consider a linear combination of a global task, resulting in the shortest path to the target source, and a local task, resulting in a coordinated motion along the local chemoattractant gradient. For a follower agent, we consider only the local task. First, we show that the self-driven forces learned by the leader cell point approximately to the placode, which means that the agent is able to learn to follow the shortest path to the target. To validate our method, we compare the total time elapsed for agents to reach the placode computed using the proposed method and the time computed using an agent-based model. The distributions of the migration time intervals calculated using the two methods are shown to not differ significantly. We then study the effect of co-attraction and contact-inhibition of locomotion to the collective leader cell migration. We show that the overall leader cell migration for the case with co-attraction is slower because the co-attraction mitigates the source-driven effect. In addition, we find that the leader and follower agents learn to follow a similar migration behavior as in experimental observations. Overall, our proposed method provides useful insight on how to apply reinforcement learning techniques to simulate collective cell migration.



rate research

Read More

Cells crawling through tissues migrate inside a complex fibrous environment called the extracellular matrix (ECM), which provides signals regulating motility. Here we investigate one such well-known pathway, involving mutually antagonistic signalling molecules (small GTPases Rac and Rho) that control the protrusion and contraction of the cell edges (lamellipodia). Invasive melanoma cells were observed migrating on surfaces with topography (array of posts), coated with adhesive molecules (fibronectin, FN) by Park et al., 2016. Several distinct qualitative behaviors they observed included persistent polarity, oscillation between the cell front and back, and random dynamics. To gain insight into the link between intracellular and ECM signaling, we compared experimental observations to a sequence of mathematical models encoding distinct hypotheses. The successful model required several critical factors. (1) Competition of lamellipodia for limited pools of GTPases. (2) Protrusion / contraction of lamellipodia influence ECM signaling. (3) ECM-mediated activation of Rho. A model combining these elements explains all three cellular behaviors and correctly predicts the results of experimental perturbations. This study yields new insight into how the dynamic interactions between intracellular signaling and the cells environment influence cell behavior.
The aim of the article is to study the stability of a non-local kinetic model proposed by Loy and Preziosi (2019a). We split the population in two subgroups and perform a linear stability analysis. We show that pattern formation results from modulation of one non-dimensional parameter that depends on the tumbling frequency, the sensing radius, the mean speed in a given direction, the uniform configuration density and the tactic response to the cell density. Numerical simulations show that our linear stability analysis predicts quite precisely the ranges of parameters determining instability and pattern formation. We also extend the stability analysis in the case of different mean speeds in different directions. In this case, for parameter values leading to instability travelling wave patterns develop.
The phenomenological model for cell shape deformation and cell migration (Chen et.al. 2018; Vermolen and Gefen 2012) is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental observations in Mak et.al. (2013), where transmigration of cancer cells through narrow apertures is studied, are reproduced using a Monte Carlo framework.
56 - Noe Casas 2017
Traffic light timing optimization is still an active line of research despite the wealth of scientific literature on the topic, and the problem remains unsolved for any non-toy scenario. One of the key issues with traffic light optimization is the large scale of the input information that is available for the controlling agent, namely all the traffic data that is continually sampled by the traffic detectors that cover the urban network. This issue has in the past forced researchers to focus on agents that work on localized parts of the traffic network, typically on individual intersections, and to coordinate every individual agent in a multi-agent setup. In order to overcome the large scale of the available state information, we propose to rely on the ability of deep Learning approaches to handle large input spaces, in the form of Deep Deterministic Policy Gradient (DDPG) algorithm. We performed several experiments with a range of models, from the very simple one (one intersection) to the more complex one (a big city section).
In this paper we develop mathematical models for collective cell motility. Initially we develop a model using a linear diffusion-advection type equation and fit the parameters to data from cell motility assays. This approach is helpful in classifying the results of cell motility assay experiments. In particular, this model can determine degrees of directed versus undirected collective cell motility. Next we develop a model using a nonlinear diffusion term that is able capture in a unified way directed and undirected collective cell motility. Finally we apply the nonlinear diffusion approach to a problem in tumor cell invasion, noting that neither chemotaxis or haptotaxis are present in the system under consideration in this article.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا