Do you want to publish a course? Click here

A Unified Term for Directed and Undirected Motility in Collective Cell Invasion

219   0   0.0 ( 0 )
 Added by Jason Graham
 Publication date 2012
  fields Biology
and research's language is English




Ask ChatGPT about the research

In this paper we develop mathematical models for collective cell motility. Initially we develop a model using a linear diffusion-advection type equation and fit the parameters to data from cell motility assays. This approach is helpful in classifying the results of cell motility assay experiments. In particular, this model can determine degrees of directed versus undirected collective cell motility. Next we develop a model using a nonlinear diffusion term that is able capture in a unified way directed and undirected collective cell motility. Finally we apply the nonlinear diffusion approach to a problem in tumor cell invasion, noting that neither chemotaxis or haptotaxis are present in the system under consideration in this article.



rate research

Read More

Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.
Studying the development of malignant tumours, it is important to know and predict the proportions of different cell types in tissue samples. Knowing the expected temporal evolution of the proportion of normal tissue cells, compared to stem-like and non-stem like cancer cells, gives an indication about the progression of the disease and indicates the expected response to interventions with drugs. Such processes have been modeled using Markov processes. An essential step for the simulation of such models is then the determination of state transition probabilities. We here consider the experimentally more realistic scenario in which the measurement of cell population sizes is noisy, leading to a particular hidden Markov model. In this context, randomness in measurement is related to noisy measurements, which are used for the estimation of the transition probability matrix. Randomness in sampling, on the other hand, is here related to the error in estimating the state probability from small cell populations. Using aggregated data of fluorescence-activated cell sorting (FACS) measurement, we develop a minimum mean square error estimator (MMSE) and maximum likelihood (ML) estimator and formulate two problems to find the minimum number of required samples and measurements to guarantee the accuracy of predicted population sizes using a transition probability matrix estimated from noisy data. We analyze the properties of two estimators for different noise distributions and prove an optimal solution for Gaussian distributions with the MMSE. Our numerical results show, that for noisy measurements the convergence mechanism of transition probabilities and steady states differ widely from the real values if one uses the standard deterministic approach in which measurements are assumed to be noise free.
Complete understanding of the mechanisms regulating the proliferation and differentiation that takes place during human immune CD8+ T cell responses is still lacking. Human clinical data is usually limited to blood cell counts, yet the initiation of these responses occurs in the draining lymph nodes; antigen-specific effector and memory CD8+ T cells generated in the lymph nodes migrate to those tissues where they are required. We use approximate Bayesian computation with deterministic mathematical models of CD8+ T cell populations (naive, central memory, effector memory and effector) and yellow fever virus vaccine data to infer the dynamics of these CD8+ T cell populations in three spatial compartments: draining lymph nodes, circulation and skin. We have made use of the literature to obtain rates of division and death for human CD8+ T cell population subsets and thymic export rates. Under the decreasing potential hypothesis for differentiation during an immune response, we find that, as the number of T cell clonotypes driven to an immune response increases, there is a reduction in the number of divisions required to differentiate from a naive to an effector CD8+ T cell, supporting the division of labour hypothesis observed in murine studies. We have also considered the reverse differentiation scenario, the increasing potential hypothesis. The decreasing potential model is better supported by the yellow fever virus vaccine data.
Cell proliferation is typically incorporated into stochastic mathematical models of cell migration by assuming that cell divisions occur after an exponentially distributed waiting time. Experimental observations, however, show that this assumption is often far from the real cell cycle time distribution (CCTD). Recent studies have suggested an alternative approach to modelling cell proliferation based on a multi-stage representation of the CCTD. In order to validate and parametrise these models, it is important to connect them to experimentally measurable quantities. In this paper we investigate the connection between the CCTD and the speed of the collective invasion. We first state a result for a general CCTD, which allows the computation of the invasion speed using the Laplace transform of the CCTD. We use this to deduce the range of speeds for the general case. We then focus on the more realistic case of multi-stage models, using both a stochastic agent-based model and a set of reaction-diffusion equations for the cells average density. By studying the corresponding travelling wave solutions, we obtain an analytical expression for the speed of invasion for a general N-stage model with identical transition rates, in which case the resulting cell cycle times are Erlang distributed. We show that, for a general N-stage model, the Erlang distribution and the exponential distribution lead to the minimum and maximum invasion speed, respectively. This result allows us to determine the range of possible invasion speeds in terms of the average proliferation time for any multi-stage model.
Collective motion of cells is critical to some of the most vital tasks including wound healing, development, and immune response [Friedl and Gilmour 2009; Tokarski et al. 2012; Lee et al. 2012; Beltman et al. 2009], and is common to many pathological processes including cancer cell invasion and teratogenesis [Khalil and Friedl 2010]. The extensive understanding of movement by single cells [R{o}rth 2011; Insall and Machesky 2011; Houk et al. 2012] is insufficient to predict the behavior of cellular groups [Theveneau et al. 2013; Trepat, X. and Fredberg 2011], and identifying underlying rules of coordination in collective cell migration is still evasive. Few of the supposed benefits of collective motion have ever been tested at the cellular scale. As an example, though collective sensing allows for larger groups to exhibit greater accuracy in navigation [Simons 2004; Berdahl et al. 2013] and group taxis is possible through the leadership of only a few individuals [Couzin et al. 2005], such effects have never been investigated in collective cell migration. We will investigate collective motion and decision-making in a primitive multicellular animal, Trichoplax adhaerens to understand how intercellular coordination affects animal behavior and how migration accuracy scales with cellular group size.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا