No Arabic abstract
Copper-oxide high TC superconductors possess a number of exotic orders co-existing with or proximal to superconductivity, whose quantum fluctuations may account for the unusual behaviors of the normal state, even affecting superconductivity. Yet, spectroscopic evidence about such quantum fluctuations remains elusive. Here, we reveal spectroscopic fingerprints for such fluctuations associated with a charge order (CO) in nearly optimally-doped Bi2Sr2CaCu2O8+d, using resonant inelastic x-ray scattering (RIXS). In the superconducting state, while the quasi-elastic CO signal decreases with temperature, the interplay between CO fluctuations and bond-stretching phonons in the form of a Fano-like interference paradoxically increases, incompatible with expectations for competing orders. Invoking general principles, we argue that this behavior reflects the properties of a dissipative system near an order-disorder quantum critical point, where the dissipation varies with the opening of the pseudogap and superconducting gap at low temperatures, leading to the proliferation of quantum critical fluctuations which melt CO.
We report x-ray absorption and photoemission spectroscopy of the electronic structure in the normal state of metallic YFe2Ge2. The data reveal evidence for large fluctuating spin moments on the Fe sites, as indicated by exchange multiplets appearing in the Fe 3s core level photoemission spectra, even though the compound does not show magnetic order. The magnitude of the multiplet splitting is comparable to that observed in the normal state of the Fe-pnictide superconductors. This shows a connection between YFe2Ge2 and the Fe-based superconductors even though it contains neither pnictogens nor chalcogens. The implication is that the chemical range of compounds showing at least one of the characteristic magnetic signatures of the Fe-based superconductors is broader than previously thought.
The presence of different electronic orders other than superconductivity populating the phase diagram of cuprates suggests that they might be the key to disclose the mysteries of this class of materials. In particular charge order in the form of charge density waves (CDW), i.e., the incommensurate modulation of electron density in the CuO$_2$ planes, is ubiquitous across different families and presents a clear interplay with superconductivity. Until recently, CDW had been found to be confined inside a rather small region of the phase diagram, below the pseudogap temperature and the optimal doping. This occurrence might shed doubts on the possibility that such low temperature phenomenon actually rules the properties of cuprates either in the normal or in the superconducting states. However, recent resonant X-ray scattering (RXS) experiments are overturning this paradigm. It results that very short-ranged charge modulations permeate a much wider region of the phase diagram, coexisting with CDW at lower temperatures and persisting up to temperatures well above the pseudogap opening. Here we review the characteristics of these high temperature charge modulations, which are present in several cuprate families, with similarities and differences. A particular emphasis is put on their dynamical character and on their coupling to lattice and magnetic excitations, properties that can be determined with high resolution resonant inelastic x-ray scattering (RIXS).
In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.
One of the key issues in unraveling the mystery of high Tc superconductivity in the cuprates is to understand the normal state outside the superconducting dome. Here we perform scanning tunneling microscopy and spectroscopy measurements on a heavily overdoped, non-superconducting (Bi,Pb)2Sr2CuO6+x cuprate. Spectroscopic imaging reveals dispersive quasiparticle interferences and the Fourier transforms uncover the evolution of momentum space topology. More interestingly, we observe nanoscale patches of static charge order with sqrt(2)*sqrt(2) periodicity. Both the dispersive quasiparticle interference and static charge order can be qualitatively explained by theoretical calculations, which reveal the unique electronic structure of strongly overdoped cuprate.
Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflection characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.