Do you want to publish a course? Click here

Charge Order in the Pseudogap Phase of Cuprate Superconductors

291   0   0.0 ( 0 )
 Added by William A. Atkinson
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.



rate research

Read More

We report in-plane resistivity ($rho$) and transverse magnetoresistance (MR) measurements in underdoped HgBa$_2$CuO$_{4+delta}$ (Hg1201). Contrary to the longstanding view that Kohlers rule is strongly violated in underdoped cuprates, we find that it is in fact satisfied in the pseudogap phase of Hg1201. The transverse MR shows a quadratic field dependence, $deltarho/rho_o=a H^{2}$, with $a(T)propto T^{-4}$. In combination with the observed $rhopropto T^2$ dependence, this is consistent with a single Fermi-liquid quasiparticle scattering rate. We show that this behavior is universal, yet typically masked in cuprates with lower structural symmetry or strong disorder effects.
The presence of different electronic orders other than superconductivity populating the phase diagram of cuprates suggests that they might be the key to disclose the mysteries of this class of materials. In particular charge order in the form of charge density waves (CDW), i.e., the incommensurate modulation of electron density in the CuO$_2$ planes, is ubiquitous across different families and presents a clear interplay with superconductivity. Until recently, CDW had been found to be confined inside a rather small region of the phase diagram, below the pseudogap temperature and the optimal doping. This occurrence might shed doubts on the possibility that such low temperature phenomenon actually rules the properties of cuprates either in the normal or in the superconducting states. However, recent resonant X-ray scattering (RXS) experiments are overturning this paradigm. It results that very short-ranged charge modulations permeate a much wider region of the phase diagram, coexisting with CDW at lower temperatures and persisting up to temperatures well above the pseudogap opening. Here we review the characteristics of these high temperature charge modulations, which are present in several cuprate families, with similarities and differences. A particular emphasis is put on their dynamical character and on their coupling to lattice and magnetic excitations, properties that can be determined with high resolution resonant inelastic x-ray scattering (RIXS).
The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping $p^*$ that is material-dependent. What determines $p^*$ is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping $p_{FS}$ at which the large Fermi surface goes from hole-like to electron-like, so that $p^*$ $leq$ $p_{FS}$. We derive this result from high-magnetic-field transport measurements in La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ under pressure, which reveal a large and unexpected shift of $p^*$ with pressure, driven by a corresponding shift in $p_{FS}$. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that $p^*$ can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.
Close to optimal doping, the copper oxide superconductors show strange metal behavior, suggestive of strong fluctuations associated with a quantum critical point. Such a critical point requires a line of classical phase transitions terminating at zero temperature near optimal doping inside the superconducting dome. The underdoped region of the temperature-doping phase diagram from which superconductivity emerges is referred to as the pseudogap because evidence exists for partial gapping of the conduction electrons, but so far there is no compelling thermodynamic evidence as to whether the pseudogap is a distinct phase or a continuous evolution of physical properties on cooling. Here we report that the pseudogap in YBCO cuprate superconductors is a distinct phase, bounded by a line of phase transitions. The doping dependence of this line is such that it terminates at zero temperature inside the superconducting dome. From this we conclude that quantum criticality drives the strange metallic behavior and therefore superconductivity in the cuprates.
Recent angle resolved photoemission cite{yang-nature-08} and scanning tunneling microscopy cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا