Do you want to publish a course? Click here

Markovian approximation of the rough Bergomi model for Monte Carlo option pricing

233   0   0.0 ( 0 )
 Added by Qinwen Zhu
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

The recently developed rough Bergomi (rBergomi) model is a rough fractional stochastic volatility (RFSV) model which can generate more realistic term structure of at-the-money volatility skews compared with other RFSV models. However, its non-Markovianity brings mathematical and computational challenges for model calibration and simulation. To overcome these difficulties, we show that the rBergomi model can be approximated by the Bergomi model, which has the Markovian property. Our main theoretical result is to establish and describe the affine structure of the rBergomi model. We demonstrate the efficiency and accuracy of our method by implementing a Markovian approximation algorithm based on a hybrid scheme.



rate research

Read More

82 - Peter Carr , Andrey Itkin 2019
In this paper we apply Markovian approximation of the fractional Brownian motion (BM), known as the Dobric-Ojeda (DO) process, to the fractional stochastic volatility model where the instantaneous variance is modelled by a lognormal process with drift and fractional diffusion. Since the DO process is a semi-martingale, it can be represented as an Ito diffusion. It turns out that in this framework the process for the spot price $S_t$ is a geometric BM with stochastic instantaneous volatility $sigma_t$, the process for $sigma_t$ is also a geometric BM with stochastic speed of mean reversion and time-dependent colatility of volatility, and the supplementary process $calV_t$ is the Ornstein-Uhlenbeck process with time-dependent coefficients, and is also a function of the Hurst exponent. We also introduce an adjusted DO process which provides a uniformly good approximation of the fractional BM for all Hurst exponents $H in [0,1]$ but requires a complex measure. Finally, the characteristic function (CF) of $log S_t$ in our model can be found in closed form by using asymptotic expansion. Therefore, pricing options and variance swaps (by using a forward CF) can be done via FFT, which is much easier than in rough volatility models.
We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a discrete multinomial tree. The crucial feature of our approach is that -- in a similar spirit to the Brownian Bridge -- each random path runs backward from a terminal fixed point to the initial spot price. We characterize the tree in two alternative ways: in terms of the optimal grids originating from the Recursive Marginal Quantization algorithm and following an approach inspired by the finite difference approximation of the diffusions infinitesimal generator. We assess the reliability of the new methodology comparing the performance of both approaches and benchmarking them with competitor Monte Carlo methods.
189 - Takuji Arai 2021
For the Barndorff-Nielsen and Shephard model, we present approximate expressions of call option prices based on the decomposition formula developed by Arai (2021). Besides, some numerical experiments are also implemented to make sure how effective our approximations are.
In this paper, we extend the classical Ho-Lee binomial term structure model to the case of time-dependent parameters and, as a result, resolve a drawback associated with the model. This is achieved with the introduction of a more flexible no-arbitrage condition in contrast to the one assumed in the Ho-Lee model.
The objective of this paper is to introduce the theory of option pricing for markets with informed traders within the framework of dynamic asset pricing theory. We introduce new models for option pricing for informed traders in complete markets where we consider traders with information on the stock price direction and stock return mean. The Black-Scholes-Merton option pricing theory is extended for markets with informed traders, where price processes are following continuous-diffusions. By doing so, the discontinuity puzzle in option pricing is resolved. Using market option data, we estimate the implied surface of the probability for a stock upturn, the implied mean stock return surface, and implied trader information intensity surface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا