In this paper, we extend the classical Ho-Lee binomial term structure model to the case of time-dependent parameters and, as a result, resolve a drawback associated with the model. This is achieved with the introduction of a more flexible no-arbitrage condition in contrast to the one assumed in the Ho-Lee model.
For the Barndorff-Nielsen and Shephard model, we present approximate expressions of call option prices based on the decomposition formula developed by Arai (2021). Besides, some numerical experiments are also implemented to make sure how effective our approximations are.
The recently developed rough Bergomi (rBergomi) model is a rough fractional stochastic volatility (RFSV) model which can generate more realistic term structure of at-the-money volatility skews compared with other RFSV models. However, its non-Markovianity brings mathematical and computational challenges for model calibration and simulation. To overcome these difficulties, we show that the rBergomi model can be approximated by the Bergomi model, which has the Markovian property. Our main theoretical result is to establish and describe the affine structure of the rBergomi model. We demonstrate the efficiency and accuracy of our method by implementing a Markovian approximation algorithm based on a hybrid scheme.
The objective of this paper is to introduce the theory of option pricing for markets with informed traders within the framework of dynamic asset pricing theory. We introduce new models for option pricing for informed traders in complete markets where we consider traders with information on the stock price direction and stock return mean. The Black-Scholes-Merton option pricing theory is extended for markets with informed traders, where price processes are following continuous-diffusions. By doing so, the discontinuity puzzle in option pricing is resolved. Using market option data, we estimate the implied surface of the probability for a stock upturn, the implied mean stock return surface, and implied trader information intensity surface.
In this paper, we have studied option pricing methods that are based on a Bayesian Markov-Switching Vector Autoregressive (MS-BVAR) process using a risk-neutral valuation approach. A BVAR process which is a special case of the Bayesian MS-VAR process is widely used to model inter-dependencies of economic variables and forecast economic variables. Here we assumed that a regime-switching process is generated by a homogeneous Markov process and for a normal system, a residual process follows a conditional heteroscedastic model. With a direct calculation and change of probability measure, for some frequently used options, we derive pricing formulas. An advantage of our model is it depends on economic variables and is easy to use compared to previous option pricing papers which depend on regime-switching.
We design three continuous--time models in finite horizon of a commodity price, whose dynamics can be affected by the actions of a representative risk--neutral producer and a representative risk--neutral trader. Depending on the model, the producer can control the drift and/or the volatility of the price whereas the trader can at most affect the volatility. The producer can affect the volatility in two ways: either by randomizing her production rate or, as the trader, using other means such as spreading false information. Moreover, the producer contracts at time zero a fixed position in a European convex derivative with the trader. The trader can be price-taker, as in the first two models, or she can also affect the volatility of the commodity price, as in the third model. We solve all three models semi--explicitly and give closed--form expressions of the derivative price over a small time horizon, preventing arbitrage opportunities to arise. We find that when the trader is price-taker, the producer can always compensate the loss in expected production profit generated by an increase of volatility by a gain in the derivative position by driving the price at maturity to a suitable level. Finally, in case the trader is active, the model takes the form of a nonzero-sum linear-quadratic stochastic differential game and we find that when the production rate is already at its optimal stationary level, there is an amount of derivative position that makes both players better off when entering the game.