Do you want to publish a course? Click here

A backward Monte Carlo approach to exotic option pricing

223   0   0.0 ( 0 )
 Added by Giulia Livieri
 Publication date 2015
  fields Financial
and research's language is English




Ask ChatGPT about the research

We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a discrete multinomial tree. The crucial feature of our approach is that -- in a similar spirit to the Brownian Bridge -- each random path runs backward from a terminal fixed point to the initial spot price. We characterize the tree in two alternative ways: in terms of the optimal grids originating from the Recursive Marginal Quantization algorithm and following an approach inspired by the finite difference approximation of the diffusions infinitesimal generator. We assess the reliability of the new methodology comparing the performance of both approaches and benchmarking them with competitor Monte Carlo methods.



rate research

Read More

We study the pricing and hedging of European spread options on correlated assets when, in contrast to the standard framework and consistent with imperfect liquidity markets, the trading in the stock market has a direct impact on stocks prices. We consider a partial-impact and a full-impact model in which the price impact is caused by every trading strategy in the market. The generalized Black-Scholes pricing partial differential equations (PDEs) are obtained and analysed. We perform a numerical analysis to exhibit the illiquidity effect on the replication strategy of the European spread option. Compared to the Black-Scholes model or a partial impact model, the trader in the full impact model buys more stock to replicate the option, and this leads to a higher option price.
The recently developed rough Bergomi (rBergomi) model is a rough fractional stochastic volatility (RFSV) model which can generate more realistic term structure of at-the-money volatility skews compared with other RFSV models. However, its non-Markovianity brings mathematical and computational challenges for model calibration and simulation. To overcome these difficulties, we show that the rBergomi model can be approximated by the Bergomi model, which has the Markovian property. Our main theoretical result is to establish and describe the affine structure of the rBergomi model. We demonstrate the efficiency and accuracy of our method by implementing a Markovian approximation algorithm based on a hybrid scheme.
We show how spectral filters can improve the convergence of numerical schemes which use discrete Hilbert transforms based on a sinc function expansion, and thus ultimately on the fast Fourier transform. This is relevant, for example, for the computation of fluctuation identities, which give the distribution of the maximum or the minimum of a random path, or the joint distribution at maturity with the extrema staying below or above barriers. We use as examples the methods by Feng and Linetsky (2008) and Fusai, Germano and Marazzina (2016) to price discretely monitored barrier options where the underlying asset price is modelled by an exponential Levy process. Both methods show exponential convergence with respect to the number of grid points in most cases, but are limited to polynomial convergence under certain conditions. We relate these rates of convergence to the Gibbs phenomenon for Fourier transforms and achieve improved results with spectral filtering.
This paper sets up a methodology for approximately solving optimal investment problems using duality methods combined with Monte Carlo simulations. In particular, we show how to tackle high dimensional problems in incomplete markets, where traditional methods fail due to the curse of dimensionality.
The Fourier cosine expansion (COS) method is used for pricing European options numerically very fast. To apply the COS method, a truncation interval for the density of the log-returns need to be provided. Using Markovs inequality, we derive a new formula to obtain the truncation interval and prove that the interval is large enough to ensure convergence of the COS method within a predefined error tolerance. We also show by several examples that the classical approach to determine the truncation interval by cumulants may lead to serious mispricing. Usually, the computational time of the COS method is of similar magnitude in both cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا