Do you want to publish a course? Click here

Multiple Tunable Hyperbolic Resonances in Broadband Infrared Carbon-Nanotube Metamaterials

174   0   0.0 ( 0 )
 Added by John Roberts
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aligned, densely-packed carbon nanotube metamaterials prepared using vacuum filtration are an emerging infrared nanophotonic material. We report multiple hyperbolic plasmon resonances, together spanning the mid-infrared, in individual resonators made from aligned and densely-packed carbon nanotubes. In the first near-field scanning optical microscopy (NSOM) imaging study of nanotube metamaterial resonators, we observe distinct deeply-subwavelength field profiles at the fundamental and higher-order resonant frequencies. The wafer-scale area of the nanotube metamaterials allows us to combine this near-field imaging with a systematic far-field spectroscopic study of the scaling properties of many resonator arrays. Thorough theoretical modeling agrees with these measurements and identifies the resonances as higher-order Fabry-Perot (FP) resonances of hyperbolic waveguide modes. Nanotube resonator arrays show broadband extinction from 1.5-10 {mu}m and reversibly switchable extinction in the 3-5 {mu}m atmospheric transparency window through the coexistence of multiple modes in individual ribbons. Broadband carbon nanotube metamaterials supporting multiple resonant modes are a promising candidate for ultracompact absorbers, tunable thermal emitters, and broadband sensors in the mid-infrared.



rate research

Read More

Dielectric optical nanoantennas play an important role in color displays, metasurface holograms, and wavefront shaping applications. They usually exploit Mie resonances as supported on nanostructures with high refractive index, such as Si and TiO2. However, these resonances normally cannot be tuned. Although phase change materials, such as the germanium-antimony-tellurium alloys and post transition metal oxides, such as ITO, have been used to tune optical antennas in the near infrared spectrum, tunable dielectric antennae in the visible spectrum remain to be demonstrated. In this paper, we designed and experimentally demonstrated tunable dielectric nanoantenna arrays with Mie resonances in the visible spectrum, exploiting phase transitions in wide-bandgap Sb2S3 nano-resonators. In the amorphous state, Mie resonances in these Sb2S3 nanostructures give rise to a strong structural color in reflection mode. Thermal annealing induced crystallization and laser induced amorphization of the Sb2S3 resonators allow the color to be tuned reversibly. We believe these tunable Sb2S3 nanoantennae arrays will enable a wide variety of tunable nanophotonic applications, such as high-resolution color displays, holographic displays, and miniature LiDAR systems.
We theoretically consider infrared-driven hyperbolic metamaterials able to spatially filtering terahertz radiation. The metamaterial is a slab made of alternating semiconductor and dielectric layers whose homogenized uniaxial response, at terahertz frequencies, shows principal permittivities of different signs. The gap provided by metamaterial hyperbolic dispersion allows the slab to stop spatial frequencies within a bandwidth tunable by changing the infrared radiation intensity. We numerically prove the device functionality by resorting to full wave simulation coupled to the dynamics of charge carries photoexcited by infrared radiation in semiconductor layers.
Designing broadband enhanced chirality is of strong interest to the emerging fields of chiral chemistry and sensing, or to control the spin orbital momentum of photons in recently introduced nanophotonic chiral quantum and classical optical applications. However, chiral light-matter interactions have an extremely weak nature, are difficult to be controlled and enhanced, and cannot be made tunable or broadband. In addition, planar ultrathin nanophotonic structures to achieve strong, broadband, and tunable chirality at the technologically important visible to ultraviolet spectrum still remain elusive. Here, we tackle these important problems by experimentally demonstrating and theoretically verifying spectrally tunable, extremely large, and broadband chiroptical response by nanohelical metamaterials. The reported new designs of all-dielectric and dielectric-metallic (hybrid) plasmonic metamaterials permit the largest and broadest ever measured chiral Kuhn dissymmetry factor achieved by a large-scale nanophotonic structure. In addition, the strong circular dichroism of the presented bottom-up fabricated optical metamaterials can be tuned by varying their dimensions and proportions between their dielectric and plasmonic helical subsections. The currently demonstrated ultrathin optical metamaterials are expected to provide a substantial boost to the developing field of chiroptics leading to significantly enhanced and broadband chiral light-matter interactions at the nanoscale.
We experimentally demonstrate a broadband enhancement of emission from nitrogen vacancy centers in nanodiamonds. The enhancement is achieved by using a multilayer metamaterial with hyperbolic dispersion. The metamaterial is fabricated as a stack of alternating gold and alumina layers. Our approach paves the way towards the construction of efficient single-photon sources as planar on-chip devices.
Recently, phase-change materials (PCMs) have drawn more attention due to the dynamically tunable optical properties. Here, we investigate the active control of electromagnetically induced transparency (EIT) analogue based on terahertz (THz) metamaterials integrated with vanadium oxide (VO2). Utilizing the insulator-to-metal transition of VO2, the amplitude of EIT peak can be actively modulated with a significant modulation depth. Meanwhile the group delay within the transparent window can also be dynamically tuned, achieving the active control of slow light effect. Furthermore, we also introduce independently tunable transparent peaks as well as group delay based on a double-peak EIT with good tuning performance. Finally, based on broadband EIT, the active tuning of quality factor of the EIT peak is also realized. This work introduces active EIT control with more degree of freedom by employing VO2, and can find potential applications in future wireless and ultrafast THz communication systems as multi-channel filters, switches, spacers, logic gates and modulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا