No Arabic abstract
Designing broadband enhanced chirality is of strong interest to the emerging fields of chiral chemistry and sensing, or to control the spin orbital momentum of photons in recently introduced nanophotonic chiral quantum and classical optical applications. However, chiral light-matter interactions have an extremely weak nature, are difficult to be controlled and enhanced, and cannot be made tunable or broadband. In addition, planar ultrathin nanophotonic structures to achieve strong, broadband, and tunable chirality at the technologically important visible to ultraviolet spectrum still remain elusive. Here, we tackle these important problems by experimentally demonstrating and theoretically verifying spectrally tunable, extremely large, and broadband chiroptical response by nanohelical metamaterials. The reported new designs of all-dielectric and dielectric-metallic (hybrid) plasmonic metamaterials permit the largest and broadest ever measured chiral Kuhn dissymmetry factor achieved by a large-scale nanophotonic structure. In addition, the strong circular dichroism of the presented bottom-up fabricated optical metamaterials can be tuned by varying their dimensions and proportions between their dielectric and plasmonic helical subsections. The currently demonstrated ultrathin optical metamaterials are expected to provide a substantial boost to the developing field of chiroptics leading to significantly enhanced and broadband chiral light-matter interactions at the nanoscale.
Aligned, densely-packed carbon nanotube metamaterials prepared using vacuum filtration are an emerging infrared nanophotonic material. We report multiple hyperbolic plasmon resonances, together spanning the mid-infrared, in individual resonators made from aligned and densely-packed carbon nanotubes. In the first near-field scanning optical microscopy (NSOM) imaging study of nanotube metamaterial resonators, we observe distinct deeply-subwavelength field profiles at the fundamental and higher-order resonant frequencies. The wafer-scale area of the nanotube metamaterials allows us to combine this near-field imaging with a systematic far-field spectroscopic study of the scaling properties of many resonator arrays. Thorough theoretical modeling agrees with these measurements and identifies the resonances as higher-order Fabry-Perot (FP) resonances of hyperbolic waveguide modes. Nanotube resonator arrays show broadband extinction from 1.5-10 {mu}m and reversibly switchable extinction in the 3-5 {mu}m atmospheric transparency window through the coexistence of multiple modes in individual ribbons. Broadband carbon nanotube metamaterials supporting multiple resonant modes are a promising candidate for ultracompact absorbers, tunable thermal emitters, and broadband sensors in the mid-infrared.
We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of $10^{11}$ Jones and a gain up to $10^{6}$, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of $|E/E_{0}|approx20$ for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors.
We study theoretically and experimentally a novel type of metamaterial with hybrid elements composed of twisted pairs of cross-shaped meta-atoms and their complements. We reveal that such two-layer metasurfaces demonstrate large, dispersionless optical activity at the transmission resonance accompanied by very low ellipticity. We develop a retrieval procedure to determine the effective material parameters for this structure, which has lower-order symmetry ($mathrm {C}_4$) than other commonly studied chiral structures. We verify our new theoretical approach by reproducing numerical and experimental scattering parameters.
The gain-assisted plasmonic analogue of electromagnetically induced transparency (EIT) in a metallic metamaterial is investigated for the purpose to enhance the sensing performance of the EIT-like plasmonic structure. The structure is composed of three bars in one unit, two of which are parallel to each other (dark quadrupolar element) but perpendicular to the third bar (bright dipolar element), The results show that, in addition to the high sensitivity to the refractive-index fluctuation of the surrounding medium, the figure of merit for such active EIT-like metamaterials can be greatly enhanced, which is attributed to the amplified narrow transparency peak.