Do you want to publish a course? Click here

Hyper-massive Black Holes have Faint Broad and Narrow Emission Lines

114   0   0.0 ( 0 )
 Added by Harshitha K Bhat
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The EUV provides most of the ionization that creates the high equivalent width (EW) broad and narrow emission lines (BELs, NELs) of quasars. Spectra of Hypermassive Schwarzschild black holes (HMBHs, $M_{BH} geq 10^{10} M_{odot}$) with $alpha$-discs, decline rapidly in the EUV suggesting much lower EWs. Model spectra for black holes of mass $10^{6}-10^{12} M_{odot}$ and accretion rates $0.03 leq L_{bol}/L_{edd} leq 1.0$ were input to the CLOUDY photoionization code. BELs become $sim$100 times weaker in EW from $M_{BH} sim 10^8 M_{odot}$ to $M_{BH} sim 10^{10} M_{odot}$. The high ionization BELs (O VI 1034 $overset{circ}{mathrm {A}}$, C IV 1549 $overset{circ}{mathrm {A}}$, He II 1640 $overset{circ}{mathrm {A}}$) decline in EW from ($M_{BH} geq 10^6 M_{odot}$, reproducing the Baldwin effect, but regain EW for $M_{BH} geq 10^{10} M_{odot}$). The low ionization lines (MgII 2798 $overset{circ}{mathrm {A}}$, H$beta$ 4861 $overset{circ}{mathrm {A}}$ and H$alpha$ 6563 $overset{circ}{mathrm {A}}$) remain weak. Lines for maximally spinning HMBHs behave similarly. Line ratio diagrams for the BELs show that high OVI/H$beta$ and low CIV/H$alpha$ may pick out HMBH, although OVI is often hard to observe. In NEL BPT diagrams HMBHs lie among star-forming regions, except for highly spinning, high accretion rate HMBHs. In summary, the BELs expected from HMBHs would be hard to detect using the current optical facilities. From 100 to $10^{12} M_{odot}$, the emission lines used to detect AGN only have high EW in the $10^6 - 10^9 M_{odot}$ window, where most AGN are found. This selection effect may be distorting reported distributions of $M_{BH}$.



rate research

Read More

60 - {DJ}. Savic 2018
The innermost regions in active galactic nuclei (AGNs) were not being spatially resolved so far but spectropolarimetry can provide us insight about their hidden physics and the geometry. From spectropolarimetric observations in broad emission lines and assuming equatorial scattering as a dominant polarization mechanism, it is possible to estimate the mass of supermassive black holes (SMBHs). We explore the possibilities and limits and to put constraints on the usage of the method for determining SMBH masses using polarization in broad emission lines by providing more in-depth theoretical modeling. Methods. We use the Monte Carlo radiative transfer code STOKES for exploring polarization of Type 1 AGNs. We model equatorial scattering using flared-disk geometry for a set of different SMBH masses assuming Thomson scattering. In addition to the Keplerian motion in the BLR, we also consider cases of additional radial inflows and vertical outflows. We model the profiles of polarization plane position angle, degree of polarization and total unpolarized line for different BLR geometries and different SMBH masses. Our modeling confirms that the method can be widely used for Type-1 AGNs when viewing inclinations are between 25 and 45 degrees. We show that the distance between the BLR and scattering region (SR) has a significant impact on the mass estimates and the best mass estimates are when the SR is situated at the distance 1.5-2.5 times larger than the outer BLR radius. Our models show that if Keplerian motion can be traced through the polarized line profile, then the direct estimation of the mass of the SMBH can be performed. When radial inflows or vertical outflows are present in the BLR, this method can be applied if velocities of the inflow/outflow are less than 500 km/s. We find that models for NGC4051, NGC4151, 3C273 and PG0844+349 are in good agreements with observations.
The UV/optical variation, likely driven by accretion disc turbulence, is a defining characteristic of type 1 active galactic nuclei (AGNs) and quasars. In this work we investigate an interesting consequence of such turbulence using quasars in SDSS Stripe 82 for which the measurements of the UV/optical variability amplitude are available from $sim$ 10 years long light curves. We discover positive correlations between UV/optical variability amplitude $sigma_{rms}$ and equivalent widths of CIV, Mg II and [OIII]5007 emission lines. Such correlations remain statistically robust through partial correlation analyses, i.e., after controlling the effects of other variables including bolometric luminosity, central supermassive black hole mass, Eddington ratio and redshift. This, for the first time, indicates a causal link between disc turbulence and emission line production. We propose two potential underlying mechanisms both of which may be involved: 1) quasars with stronger disc turbulence have on average bluer/harder broadband SED, an expected effect of the disc thermal fluctuation model; 2) stronger disc turbulence could lead to launch of emission line regions with larger covering factors.
To investigate the potential abundance and impact of nuclear black holes (BHs) during reionization, we generate a neural network that estimates their masses and accretion rates by training it on 23 properties of galaxies harbouring them at $z=6$ in the cosmological hydrodynamical simulation Massive-Black II. We then populate all galaxies in the simulation from $z=18$ to $z=5$ with BHs from this network. As the network allows to robustly extrapolate to BH masses below those of the BH seeds, we predict a population of faint BHs with a turnover-free luminosity function, while retaining the bright (and observed) BHs, and together they predict a Universe in which intergalactic hydrogen is $15%$ ionized at $z=6$ for a clumping factor of 5. Faint BHs may play a stronger role in H reionization without violating any observational constraints. This is expected to have an impact also on pre-heating and -ionization, which is relevant to observations of the 21 cm line from neutral H. We also find that BHs grow more efficiently at higher $z$, but mainly follow a redshift-independent galaxy-BH relation. We provide a power law parametrisation of the hydrogen ionizing emissivity of BHs.
Periodic quasars have been suggested to host supermassive binary black holes (BBHs) in their centers, and their optical/UV periodicities are interpreted as caused by either the Doppler-boosting (DB) effect of continuum emission from the disk around the secondary black hole (BH) or intrinsic accretion rate variation. However, no other definitive evidence has been found to confirm such a BBH interpretation(s). In this paper, we investigate the responses of broad emission lines (BELs) to the continuum variations for these quasars under two BBH scenarios, and check whether they can be distinguished from each other and from that of a single BH system. We assume a simple circumbinary broad-line region (BLR) model, compatible with BLR size estimates, with a standard $Gamma$ distribution of BLR clouds. We find that BELs may change significantly and periodically under the BBH scenarios due to (1) the position variation of the secondary BH and (2) the DB effect, if significant, and/or intrinsic variation, which is significantly different from the case of a single BH system. For the two BBH scenarios, the responses of BELs to (apparent) continuum variations, caused by the DB effect or intrinsic rate variation, are also significantly different from each other, mainly because the DB effect has a preferred direction along the direction of motion of the secondary BH, while that due to intrinsic variation does not. Such differences in the responses of BELs from different scenarios may offer a robust way to distinguish different interpretations of periodic quasars and to identify BBHs, if any, in these systems.
Through the years numerous attempts have been made to connect the phenomenology and physics of mass accretion onto stellar-mass and super-massive black holes in a scale-invariant fashion. In this paper, we explore this connection at the radiatively-efficient (and non-jetted) end of accretion modes by comparing the relationship between the luminosity of the accretion disk and corona in the two source classes. We analyse 458 RXTE-PCA archival observations of the X-ray binary (XRB) GX339-4 focusing on the soft and soft-intermediate states, which have been suggested to be analogous to radiatively efficient AGN. The observed scatter in the $log L_{disk}-log L_{corona}$ relationship of GX339-4 is high ($sim0.43,$dex) and significantly larger than in a representative sample of radiatively-efficient, non- or weakly-jetted AGN ($sim0.30,$dex). On the face of it, this would appear contrary to the hypothesis that the systems simply scale with mass. On the other hand we also find that GX339-4 and our AGN sample show different $dot{m}$ and $Gamma$ distributions, with the latter being broader in GX339-4 (dispersion of $sim0.16$ cf. $sim0.08$ for AGN). GX339-4 also shows an overall softer slope, with mean $sim2.20$ as opposed to $sim2.07$ for the AGN sample. Remarkably, once similarly broad $Gamma$ and $dot{m}$ distributions are selected, the AGN sample overlaps nicely with GX339-4 observations in the mass-normalised $log L_{disk}-log L_{corona}$ plane, with a scatter of $sim0.30-0.33,$dex. This indicates that a mass-scaling of properties might hold after all, with our results being consistent with the disk-corona systems in AGN and XRBs exhibiting the same physical processes, albeit under different conditions for instance in terms of temperature, optical depth and/or electron energy distribution in the corona, heating-cooling balance, coronal geometry and/or black hole spin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا