Do you want to publish a course? Click here

Do stellar-mass and super-massive black holes have similar dining habits?

74   0   0.0 ( 0 )
 Added by Riccardo Arcodia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Through the years numerous attempts have been made to connect the phenomenology and physics of mass accretion onto stellar-mass and super-massive black holes in a scale-invariant fashion. In this paper, we explore this connection at the radiatively-efficient (and non-jetted) end of accretion modes by comparing the relationship between the luminosity of the accretion disk and corona in the two source classes. We analyse 458 RXTE-PCA archival observations of the X-ray binary (XRB) GX339-4 focusing on the soft and soft-intermediate states, which have been suggested to be analogous to radiatively efficient AGN. The observed scatter in the $log L_{disk}-log L_{corona}$ relationship of GX339-4 is high ($sim0.43,$dex) and significantly larger than in a representative sample of radiatively-efficient, non- or weakly-jetted AGN ($sim0.30,$dex). On the face of it, this would appear contrary to the hypothesis that the systems simply scale with mass. On the other hand we also find that GX339-4 and our AGN sample show different $dot{m}$ and $Gamma$ distributions, with the latter being broader in GX339-4 (dispersion of $sim0.16$ cf. $sim0.08$ for AGN). GX339-4 also shows an overall softer slope, with mean $sim2.20$ as opposed to $sim2.07$ for the AGN sample. Remarkably, once similarly broad $Gamma$ and $dot{m}$ distributions are selected, the AGN sample overlaps nicely with GX339-4 observations in the mass-normalised $log L_{disk}-log L_{corona}$ plane, with a scatter of $sim0.30-0.33,$dex. This indicates that a mass-scaling of properties might hold after all, with our results being consistent with the disk-corona systems in AGN and XRBs exhibiting the same physical processes, albeit under different conditions for instance in terms of temperature, optical depth and/or electron energy distribution in the corona, heating-cooling balance, coronal geometry and/or black hole spin.



rate research

Read More

115 - A. Lupi , F. Haardt , M. Dotti 2015
The rapid assembly of the massive black holes that power the luminous quasars observed at $z sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $sim 10^5,rm M_odot$, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the slim disc solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.
147 - S. Murray 2009
We discuss the central role played by X-ray studies to reconstruct the past history of formation and evolution of supermassive Black Holes (BHs), and the role they played in shaping the properties of their host galaxies. We shortly review the progress in this field contributed by the current X-ray and multiwavelength surveys. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM, as for X-ray observations, and the legacy of the SDSS, as for wide area surveys: 1) When and how did the first supermassive black holes form? 2) How does cosmic environment regulate nuclear activity (and star formation) across cosmic time? 3) What is the history of nuclear activity in a galaxy lifetime? We show that the most efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. Such a survey can only be carried out with a Wide-Field X-ray Telescope (WFXT) with a high survey speed, due to the combination of large field of view and large effective area, i.e., grasp, and sharp PSF. We emphasize the important synergies that WFXT will have with a number of future groundbased and space telescopes, covering from the radio to the X-ray bands and discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
145 - J. M. Miller 2009
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar-mass black holes in X-ray binaries. Thus, the spin distribution of stellar-mass black holes is almost pristine, largely reflective of the angular momentum imparted at the time of their creation. This fact can help provide insights on two fundamental questions: What is the nature of the central engine in supernovae and gamma-ray bursts? and What was the spin distribution of the first black holes in the universe?
163 - Ilya Mandel , Alison Farmer 2018
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object mergers could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
141 - Rob Fender 2012
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا