We present the fundamental solutions for the spin-1/2 fields propagating in the spacetimes with power type expansion/contraction and the fundamental solution of the Cauchy problem for the Dirac equation. The derivation of these fundamental solutions is based on formulas for the solutions to the generalized Euler-Poisson-Darboux equation, which are obtained by the integral transform approach.
In this article we give sufficient conditions for the generalized Dirac operator to obey the incomplete Huygens principle, as well as necessary and sufficient conditions to obey the Huygens principle by the Dirac operator in the curved spacetime of the Friedmann-Lema^itre-Robertson-Walker models of cosmology.
Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We have approximated for non s-waves the centrifugal term by an exponential form. The energy eigenvalue equations, and the corresponding wave functions are obtained by using the generalization of the Nikiforov-Uvarov method.
We find a remarkable subalgebra of higher symmetries of the elliptic Euler-Darboux equation. To this aim we map such equation into its hyperbolic analogue already studied by Shemarulin. Taking into consideration how symmetries and recursion operators transform by this complex contact transformation, we explicitly give the structure of this Lie algebra and prove that it is finitely generated. Furthermore, higher symmetries depending on jets up to second order are explicitly computed.