Do you want to publish a course? Click here

Tunable anisotropic absorption in monolayer black phosphorus using critical coupling

316   0   0.0 ( 0 )
 Added by Shuyuan Xiao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a monolayer black phosphorus (BP)-based metamaterial structure for tunable anisotropic absorption in the mid-infrared. Based on the critical coupling mechanism of guided resonance, the structure realizes the high absorption efficiency of 99.65$%$ for TM polarization, while only 2.61$%$ at the same wavelength for TE polarization due to the intrinsic anisotropy of BP. The absorption characteristics can be flexibly controlled by changing critical coupling conditions, including the electron doping of BP, geometric parameters and incident angles of light. The results show feasibility in designing high-performance BP-based optoelectronic devices with spectral tunability and polarization selectivity.



rate research

Read More

Black phosphorus (BP), an emerging two-dimensional (2D) material with intriguing optical properties, forms a promising building block in optics and photonics devices. In this work, we propose a simple structure composed of BP sandwiched by polymer and dielectric materials with low index contrast, and numerically demonstrate the perfect absorption mechanism via the critical coupling of guided resonances in the mid-infrared. Due to the inherent in-plane anisotropic feature of BP, the proposed structure exhibits highly polarization-dependent absorption characteristics, i.e., the optical absorption of the structure reaches 99.9$%$ for TM polarization and only 3.2$%$ for TE polarization at the same wavelength. Furthermore, the absorption peak and resonance wavelength can be flexibly tuned by adjusting the electron doping of BP, the geometrical parameters of the structure and the incident angles of light. With high efficiency absorption, the remarkable anisotropy, flexible tunability and easy-to-fabricate advantages, the proposed structure shows promising prospects in the design of polarization-selective and tunable high-performance devices in the mid-infrared, such as polarizers, modulators and photodetectors.
The research of two-dimensional (2D) materials with atomic-scale thicknesses and unique optical properties has become a frontier in photonics and electronics. Borophene, a newly reported 2D material provides a novel building block for nanoscale materials and devices. We present a simple borophene-based absorption structure to boost the light-borophene interaction via critical coupling in the visible wavelengths. The proposed structure consists of borophene monolayer deposited on a photonic crystal slab backed with a metallic mirror. The numerical simulations and theoretical analysis show that the light absorption of the structure can be remarkably enhanced as high as 99.80% via critical coupling mechanism with guided resonance, and the polarization-dependent absorption behaviors are demonstrated due to the strong anisotropy of borophene. We also examine the tunability of the absorption behaviors by adjusting carrier density and lifetime of borophene, air hole radius in the slab, the incident angle and polarization angle. The proposed absorption structure provides novel access to the flexible and effective manipulation of light-borophene interactions in the visible, and shows a good prospect for the future borophene-based electronic and photonic devices.
Enhanced optical absorption in two-dimensional (2D) materials has recently moved into the focus of nanophotonics research. In this work, we present a gain-assisted method to achieve critical coupling and demonstrate the maximum absorption in undoped monolayer graphene in the near-infrared. In a two-port system composed of photonic crystal slab loaded with graphene, the gain medium is introduced to adjust the dissipative rate to match the radiation rate for the critical coupling, which is accessible without changing the original structural geometry. The appropriate tuning of the gain coefficient also enables the critical coupling absorption within a wide wavelength regime for different coupling configurations. This work provides a powerful guide to manipulate light-matter interaction in 2D materials and opens up a new path to design ultra-compact and high-performance 2D material optical devices.
Recent progress in nanophotonics is driven by the desire to engineer light-matter interaction in two-dimensional (2D) materials using high-quality resonances in plasmonic and dielectric structures. Here, we demonstrate a link between the radiation control at critical coupling and the metasurface-based bound states in the continuum (BIC) physics, and develop a generalized theory to engineer light absorption of 2D materials in coupling resonance metasurfaces. In a typical example of hybrid graphene-dielectric metasurfaces, we present the manipulation of absorption bandwidth by more than one order of magnitude by simultaneously adjusting the asymmetry parameter of silicon resonators governed by BIC and the graphene surface conductivity while the absorption efficiency maintains maximum. This work reveals the generalized role of BIC in the radiation control at critical coupling and provides promising strategies in engineering light absorption of 2D materials for high-efficiency optoelectronics device applications, e.g., light emission, detection and modulation.
Semi-metallic graphene and semiconducting monolayer transition metal dichalcogenides (TMDCs) are the two-dimensional (2D) materials most intensively studied in recent years. Recently, black phosphorus emerged as a promising new 2D material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form, and its unique properties at the truly 2D quantum confinement have yet to be demonstrated. Here, we reveal highly anisotropic and tightly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centers around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. In addition, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of around 0.9 eV, consistent with theoretical results based on first-principles. The experimental observation of highly anisotropic, bright excitons with exceedingly large binding energy not only opens avenues for the future explorations of many-electron effects in this unusual 2D material, but also suggests a promising future in optoelectronic devices such as on-chip infrared light sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا