Do you want to publish a course? Click here

Forced-exploration free Strategies for Unimodal Bandits

168   0   0.0 ( 0 )
 Added by Hassan Saber
 Publication date 2020
and research's language is English
 Authors Hassan Saber




Ask ChatGPT about the research

We consider a multi-armed bandit problem specified by a set of Gaussian or Bernoulli distributions endowed with a unimodal structure. Although this problem has been addressed in the literature (Combes and Proutiere, 2014), the state-of-the-art algorithms for such structure make appear a forced-exploration mechanism. We introduce IMED-UB, the first forced-exploration free strategy that exploits the unimodal-structure, by adapting to this setting the Indexed Minimum Empirical Divergence (IMED) strategy introduced by Honda and Takemura (2015). This strategy is proven optimal. We then derive KLUCB-UB, a KLUCB version of IMED-UB, which is also proven optimal. Owing to our proof technique, we are further able to provide a concise finite-time analysis of both strategies in an unified way. Numerical experiments show that both IMED-UB and KLUCB-UB perform similarly in practice and outperform the state-of-the-art algorithms.



rate research

Read More

120 - Long Yang , Zhao Li , Zehong Hu 2021
In this paper, we propose a Thompson Sampling algorithm for emph{unimodal} bandits, where the expected reward is unimodal over the partially ordered arms. To exploit the unimodal structure better, at each step, instead of exploration from the entire decision space, our algorithm makes decision according to posterior distribution only in the neighborhood of the arm that has the highest empirical mean estimate. We theoretically prove that, for Bernoulli rewards, the regret of our algorithm reaches the lower bound of unimodal bandits, thus it is asymptotically optimal. For Gaussian rewards, the regret of our algorithm is $mathcal{O}(log T)$, which is far better than standard Thompson Sampling algorithms. Extensive experiments demonstrate the effectiveness of the proposed algorithm on both synthetic data sets and the real-world applications.
This paper explores multi-armed bandit (MAB) strategies in very short horizon scenarios, i.e., when the bandit strategy is only allowed very few interactions with the environment. This is an understudied setting in the MAB literature with many applications in the context of games, such as player modeling. Specifically, we pursue three different ideas. First, we explore the use of regression oracles, which replace the simple average used in strategies such as epsilon-greedy with linear regression models. Second, we examine different exploration patterns such as forced exploration phases. Finally, we introduce a new variant of the UCB1 strategy called UCBT that has interesting properties and no tunable parameters. We present experimental results in a domain motivated by exergames, where the goal is to maximize a players daily steps. Our results show that the combination of epsilon-greedy or epsilon-decreasing with regression oracles outperforms all other tested strategies in the short horizon setting.
140 - Ruida Zhou , Chao Gan , Jing Yan 2018
In this paper, we propose a cost-aware cascading bandits model, a new variant of multi-armed ban- dits with cascading feedback, by considering the random cost of pulling arms. In each step, the learning agent chooses an ordered list of items and examines them sequentially, until certain stopping condition is satisfied. Our objective is then to max- imize the expected net reward in each step, i.e., the reward obtained in each step minus the total cost in- curred in examining the items, by deciding the or- dered list of items, as well as when to stop examina- tion. We study both the offline and online settings, depending on whether the state and cost statistics of the items are known beforehand. For the of- fline setting, we show that the Unit Cost Ranking with Threshold 1 (UCR-T1) policy is optimal. For the online setting, we propose a Cost-aware Cas- cading Upper Confidence Bound (CC-UCB) algo- rithm, and show that the cumulative regret scales in O(log T ). We also provide a lower bound for all {alpha}-consistent policies, which scales in {Omega}(log T ) and matches our upper bound. The performance of the CC-UCB algorithm is evaluated with both synthetic and real-world data.
The contextual bandit literature has traditionally focused on algorithms that address the exploration-exploitation tradeoff. In particular, greedy algorithms that exploit current estimates without any exploration may be sub-optimal in general. However, exploration-free greedy algorithms are desirable in practical settings where exploration may be costly or unethical (e.g., clinical trials). Surprisingly, we find that a simple greedy algorithm can be rate optimal (achieves asymptotically optimal regret) if there is sufficient randomness in the observed contexts (covariates). We prove that this is always the case for a two-armed bandit under a general class of context distributions that satisfy a condition we term covariate diversity. Furthermore, even absent this condition, we show that a greedy algorithm can be rate optimal with positive probability. Thus, standard bandit algorithms may unnecessarily explore. Motivated by these results, we introduce Greedy-First, a new algorithm that uses only observed contexts and rewards to determine whether to follow a greedy algorithm or to explore. We prove that this algorithm is rate optimal without any additional assumptions on the context distribution or the number of arms. Extensive simulations demonstrate that Greedy-First successfully reduces exploration and outperforms existing (exploration-based) contextual bandit algorithms such as Thompson sampling or upper confidence bound (UCB).
124 - Huasen Wu , Xueying Guo , Xin Liu 2017
In this paper, we propose and study opportunistic bandits - a new variant of bandits where the regret of pulling a suboptimal arm varies under different environmental conditions, such as network load or produce price. When the load/price is low, so is the cost/regret of pulling a suboptimal arm (e.g., trying a suboptimal network configuration). Therefore, intuitively, we could explore more when the load/price is low and exploit more when the load/price is high. Inspired by this intuition, we propose an Adaptive Upper-Confidence-Bound (AdaUCB) algorithm to adaptively balance the exploration-exploitation tradeoff for opportunistic bandits. We prove that AdaUCB achieves $O(log T)$ regret with a smaller coefficient than the traditional UCB algorithm. Furthermore, AdaUCB achieves $O(1)$ regret with respect to $T$ if the exploration cost is zero when the load level is below a certain threshold. Last, based on both synthetic data and real-world traces, experimental results show that AdaUCB significantly outperforms other bandit algorithms, such as UCB and TS (Thompson Sampling), under large load/price fluctuations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا