Do you want to publish a course? Click here

Accelerating MRI Reconstruction on TPUs

60   0   0.0 ( 0 )
 Added by Tianjian Lu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The advanced magnetic resonance (MR) image reconstructions such as the compressed sensing and subspace-based imaging are considered as large-scale, iterative, optimization problems. Given the large number of reconstructions required by the practical clinical usage, the computation time of these advanced reconstruction methods is often unacceptable. In this work, we propose using Googles Tensor Processing Units (TPUs) to accelerate the MR image reconstruction. TPU is an application-specific integrated circuit (ASIC) for machine learning applications, which has recently been used to solve large-scale scientific computing problems. As proof-of-concept, we implement the alternating direction method of multipliers (ADMM) in TensorFlow to reconstruct images on TPUs. The reconstruction is based on multi-channel, sparsely sampled, and radial-trajectory $k$-space data with sparsity constraints. The forward and inverse non-uniform Fourier transform operations are formulated in terms of matrix multiplications as in the discrete Fourier transform. The sparsifying transform and its adjoint operations are formulated as convolutions. The data decomposition is applied to the measured $k$-space data such that the aforementioned tensor operations are localized within individual TPU cores. The data decomposition and the inter-core communication strategy are designed in accordance with the TPU interconnect network topology in order to minimize the communication time. The accuracy and the high parallel efficiency of the proposed TPU-based image reconstruction method are demonstrated through numerical examples.



rate research

Read More

The rapid evolution of artificial intelligence (AI) is leading to a new generation of hardware accelerators optimized for deep learning. Some of the designs of these accelerators are general enough to allow their use for other computationally intensive tasks beyond AI. Cloud tensor processing units (TPUs) are one such example. Here, we demonstrate a novel approach using TensorFlow on Cloud TPUs to implement a high-resolution imaging technique called full-waveform inversion. Higher-order numerical stencils leverage the efficient matrix multiplication offered by the Cloud TPU, and the halo exchange benefits from the dedicated high-speed interchip connection. The performance is competitive when compared with Tesla V100 graphics processing units and shows promise for future computation- and memory-intensive imaging applications.
Multi-contrast MRI images provide complementary contrast information about the characteristics of anatomical structures and are commonly used in clinical practice. Recently, a multi-flip-angle (FA) and multi-echo GRE method (MULTIPLEX MRI) has been developed to simultaneously acquire multiple parametric images with just one single scan. However, it poses two challenges for MULTIPLEX to be used in the 3D high-resolution setting: a relatively long scan time and the huge amount of 3D multi-contrast data for reconstruction. Currently, no DL based method has been proposed for 3D MULTIPLEX data reconstruction. We propose a deep learning framework for undersampled 3D MRI data reconstruction and apply it to MULTIPLEX MRI. The proposed deep learning method shows good performance in image quality and reconstruction time.
We propose a k-space preconditioning formulation for accelerating the convergence of iterative Magnetic Resonance Imaging (MRI) reconstructions from non-uniformly sampled k-space data. Existing methods either use sampling density compensations which sacrifice reconstruction accuracy, or circulant preconditioners which increase per-iteration computation. Our approach overcomes both shortcomings. Concretely, we show that viewing the reconstruction problem in the dual formulation allows us to precondition in k-space using density-compensation-like operations. Using the primal-dual hybrid gradient method, the proposed preconditioning method does not have inner loops and are competitive in accelerating convergence compared to existing algorithms. We derive l2-optimized preconditioners, and demonstrate through experiments that the proposed method converges in about ten iterations in practice.
In this work we introduce a new method that combines Parallel MRI and Compressed Sensing (CS) for accelerated image reconstruction from subsampled k-space data. The method first computes a convolved image, which gives the convolution between a user-defined kernel and the unknown MR image, and then reconstructs the image by CS-based image deblurring, in which CS is applied for removing the inherent blur stemming from the convolution process. This method is hence termed CORE-Deblur. Retrospective subsampling experiments with data from a numerical brain phantom and in-vivo 7T brain scans showed that CORE-Deblur produced high-quality reconstructions, comparable to those of a conventional CS method, while reducing the number of iterations by a factor of 10 or more. The average Normalized Root Mean Square Error (NRMSE) obtained by CORE-Deblur for the in-vivo datasets was 0.016. CORE-Deblur also exhibited robustness regarding the chosen kernel and compatibility with various k-space subsampling schemes, ranging from regular to random. In summary, CORE-Deblur enables high quality reconstructions and reduction of the CS iterations number by 10-fold.
Optimizing k-space sampling trajectories is a challenging topic for fast magnetic resonance imaging (MRI). This work proposes to optimize a reconstruction algorithm and sampling trajectories jointly concerning image reconstruction quality. We parameterize trajectories with quadratic B-spline kernels to reduce the number of parameters and enable multi-scale optimization, which may help to avoid sub-optimal local minima. The algorithm includes an efficient non-Cartesian unrolled neural network-based reconstruction and an accurate approximation for backpropagation through the non-uniform fast Fourier transform (NUFFT) operator to accurately reconstruct and back-propagate multi-coil non-Cartesian data. Penalties on slew rate and gradient amplitude enforce hardware constraints. Sampling and reconstruction are trained jointly using large public datasets. To correct the potential eddy-current effect introduced by the curved trajectory, we use a pencil-beam trajectory mapping technique. In both simulations and in-vivo experiments, the learned trajectory demonstrates significantly improved image quality compared to previous model-based and learning-based trajectory optimization methods for 20x acceleration factors. Though trained with neural network-based reconstruction, the proposed trajectory also leads to improved image quality with compressed sensing-based reconstruction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا