No Arabic abstract
In this work we introduce a new method that combines Parallel MRI and Compressed Sensing (CS) for accelerated image reconstruction from subsampled k-space data. The method first computes a convolved image, which gives the convolution between a user-defined kernel and the unknown MR image, and then reconstructs the image by CS-based image deblurring, in which CS is applied for removing the inherent blur stemming from the convolution process. This method is hence termed CORE-Deblur. Retrospective subsampling experiments with data from a numerical brain phantom and in-vivo 7T brain scans showed that CORE-Deblur produced high-quality reconstructions, comparable to those of a conventional CS method, while reducing the number of iterations by a factor of 10 or more. The average Normalized Root Mean Square Error (NRMSE) obtained by CORE-Deblur for the in-vivo datasets was 0.016. CORE-Deblur also exhibited robustness regarding the chosen kernel and compatibility with various k-space subsampling schemes, ranging from regular to random. In summary, CORE-Deblur enables high quality reconstructions and reduction of the CS iterations number by 10-fold.
Compressed sensing magnetic resonance imaging (CS-MRI) is a theoretical framework that can accurately reconstruct images from undersampled k-space data with a much lower sampling rate than the one set by the classical Nyquist-Shannon sampling theorem. Therefore, CS-MRI can efficiently accelerate acquisition time and relieve the psychological burden on patients while maintaining high imaging quality. The problems with traditional CS-MRI reconstruction are solved by iterative numerical solvers, which usually suffer from expensive computational cost and the lack of accurate handcrafted priori. In this paper, inspired by deep learnings (DLs) fast inference and excellent end-to-end performance, we propose a novel cascaded convolutional neural network called MD-Recon-Net to facilitate fast and accurate MRI reconstruction. Especially, different from existing DL-based methods, which operate on single domain data or both domains in a certain order, our proposed MD-Recon-Net contains two parallel and interactive branches that simultaneously perform on k-space and spatial-domain data, exploring the latent relationship between k-space and the spatial domain. The simulated experimental results show that the proposed method not only achieves competitive visual effects to several state-of-the-art methods, but also outperforms other DL-based methods in terms of model scale and computational cost.
Fluorine-19 (19F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypothesis that a 19F MRI pulse sequence that combines a specific undersampling regime with signal averaging has increased sensitivity and robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing. To this end, numerical simulations and phantom experiments were performed to characterize the point spread function (PSF) of undersampling patterns and the vulnerability to noise of acquisition-reconstruction strategies with paired numbers of x signal averages and acceleration factor x (NAx-AFx). At all investigated noise levels, the DSC of the acquisition-reconstruction strategies strongly depended on the regularization parameters and acceleration factor. In phantoms, motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motions. Differences were assessed with Dice similarity coefficients (DSC), and were consistently higher for NA8-AF8 compared to NA1-AF1 strategy, for both simulated and real cyclic motions (P<0.001). Both acquisition-reconstruction strategies were validated in vivo in mice (n=2) injected with perfluoropolyether. These images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypothesis that in 19F MRI, the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing.
Reconstructing under-sampled k-space measurements in Compressed Sensing MRI (CS-MRI) is classically solved with regularized least-squares. Recently, deep learning has been used to amortize this optimization by training reconstruction networks on a dataset of under-sampled measurements. Here, a crucial design choice is the regularization function(s) and corresponding weight(s). In this paper, we explore a novel strategy of using a hypernetwork to generate the parameters of a separate reconstruction network as a function of the regularization weight(s), resulting in a regularization-agnostic reconstruction model. At test time, for a given under-sampled image, our model can rapidly compute reconstructions with different amounts of regularization. We analyze the variability of these reconstructions, especially in situations when the overall quality is similar. Finally, we propose and empirically demonstrate an efficient and data-driven way of maximizing reconstruction performance given limited hypernetwork capacity. Our code is publicly available at https://github.com/alanqrwang/RegAgnosticCSMRI.
Multi-contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time-efficient strategy to acquire high-quality multi-contrast images is to accelerate individual sequences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. Such leakage-of-features may appear as artificial tissues, thereby misleading diagnosis. The goal of this study is to develop a compressive sensing method for multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi-channel multi-contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single-channel simulated and multi-channel in-vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and improved image quality for both simulated and in-vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage-of-features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great promise for clinical use.
To improve the compressive sensing MRI (CS-MRI) approaches in terms of fine structure loss under high acceleration factors, we have proposed an iterative feature refinement model (IFR-CS), equipped with fixed transforms, to restore the meaningful structures and details. Nevertheless, the proposed IFR-CS still has some limitations, such as the selection of hyper-parameters, a lengthy reconstruction time, and the fixed sparsifying transform. To alleviate these issues, we unroll the iterative feature refinement procedures in IFR-CS to a supervised model-driven network, dubbed IFR-Net. Equipped with training data pairs, both regularization parameter and the utmost feature refinement operator in IFR-CS become trainable. Additionally, inspired by the powerful representation capability of convolutional neural network (CNN), CNN-based inversion blocks are explored in the sparsity-promoting denoising module to generalize the sparsity-enforcing operator. Extensive experiments on both simulated and in vivo MR datasets have shown that the proposed network possesses a strong capability to capture image details and preserve well the structural information with fast reconstruction speed.