No Arabic abstract
Symbiotic radio (SR) is emerging as a spectrum- and energy-efficient communication paradigm for future passive Internet-of-things (IoT), where some single-antenna backscatter devices, referred to as Tags, are parasitic in an active primary transmission. The primary transceiver is designed to assist both direct-link (DL) and backscatter-link (BL) communication. In multi-tags SR systems, the transceiver designs become much more complicated due to the presence of DL and inter-Tag interference, which further poses new challenges to the availability and reliability of DL and BL transmission. To overcome these challenges, we formulate the stochastic optimization of transceiver design as the general network utility maximization problem (GUMP). The resultant problem is a stochastic multiple-ratio fractional non-convex problem, and consequently challenging to solve. By leveraging some fractional programming techniques, we tailor a surrogate function with the specific structure and subsequently develop a batch stochastic parallel decomposition (BSPD) algorithm, which is shown to converge to stationary solutions of the GNUMP. Simulation results verify the effectiveness of the proposed algorithm by numerical examples in terms of the achieved system throughput.
Mobile edge computing (MEC) integrated with multiple radio access technologies (RATs) is a promising technique for satisfying the growing low-latency computation demand of emerging intelligent internet of things (IoT) applications. Under the distributed MapReduce framework, this paper investigates the joint RAT selection and transceiver design for over-the-air (OTA) aggregation of intermediate values (IVAs) in wireless multiuser MEC systems, while taking into account the energy budget constraint for the local computing and IVA transmission per wireless device (WD). We aim to minimize the weighted sum of the computation mean squared error (MSE) of the aggregated IVA at the RAT receivers, the WDs IVA transmission cost, and the associated transmission time delay, which is a mixed-integer and non-convex problem. Based on the Lagrange duality method and primal decomposition, we develop a low-complexity algorithm by solving the WDs RAT selection problem, the WDs transmit coefficients optimization problem, and the aggregation beamforming problem. Extensive numerical results are provided to demonstrate the effectiveness and merit of our proposed algorithm as compared with other existing schemes.
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking into account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework. To circumvent the non-convexity of the formulated design problem, we first derive a closed-form optimal solution to the source transmit beamforming. Then, for the optimization of IRS reflect beamforming, we obtain an upper bound to the optimal objective value via solving a single convex problem. A low-complexity minorization-maximization (MM) algorithm was developed to approach the upper bound. Simulation results demonstrate that the proposed beamforming design is more robust to the hardware impairments than that of the conventional SNR maximized scheme. Moreover, compared to the scenario without deploying an IRS, the performance gain brought by incorporating the hardware impairments is more evident for the IRS-aided communications.
Large intelligent surface (LIS) has recently emerged as a potential low-cost solution to reshape the wireless propagation environment for improving the spectral efficiency. In this paper, we consider a downlink millimeter-wave (mmWave) multiple-input-multiple-output (MIMO) system, where an LIS is deployed to assist the downlink data transmission from a base station (BS) to a user equipment (UE). Both the BS and the UE are equipped with a large number of antennas, and a hybrid analog/digital precoding/combining structure is used to reduce the hardware cost and energy consumption. We aim to maximize the spectral efficiency by jointly optimizing the LISs reflection coefficients and the hybrid precoder (combiner) at the BS (UE). To tackle this non-convex problem, we reformulate the complex optimization problem into a much more friendly optimization problem by exploiting the inherent structure of the effective (cascade) mmWave channel. A manifold optimization (MO)-based algorithm is then developed. Simulation results show that by carefully devising LISs reflection coefficients, our proposed method can help realize a favorable propagation environment with a small channel matrix condition number. Besides, it can achieve a performance comparable to those of state-of-the-art algorithms, while at a much lower computational complexity.
Hybrid analog-digital (A/D) transceivers designed for millimeter wave (mmWave) systems have received substantial research attention, as a benefit of their lower cost and modest energy consumption compared to their fully-digital counterparts. We further improve their performance by conceiving a Tomlinson-Harashima precoding (THP) based nonlinear joint design for the downlink of multiuser multiple-input multiple-output (MIMO) mmWave systems. Our optimization criterion is that of minimizing the mean square error (MSE) of the system under channel uncertainties subject both to realistic transmit power constraint and to the unit modulus constraint imposed on the elements of the analog beamforming (BF) matrices governing the BF operation in the radio frequency domain. We transform this optimization problem into a more tractable form and develop an efficient block coordinate descent (BCD) based algorithm for solving it. Then, a novel two-timescale nonlinear joint hybrid transceiver design algorithm is developed, which can be viewed as an extension of the BCD-based joint design algorithm for reducing both the channel state information (CSI) signalling overhead and the effects of outdated CSI. Moreover, we determine the near-optimal cancellation order for the THP structure based on the lower bound of the MSE. The proposed algorithms can be guaranteed to converge to a Karush-Kuhn-Tucker (KKT) solution of the original problem. The simulation results demonstrate that our proposed nonlinear joint hybrid transceiver design algorithms significantly outperform the existing linear hybrid transceiver algorithms and approach the performance of the fully-digital transceiver, despite its lower cost and power dissipation.
This paper investigates the problem of model aggregation in federated learning systems aided by multiple reconfigurable intelligent surfaces (RISs). The effective integration of computation and communication is achieved by over-the-air computation (AirComp). Since all local parameters are transmitted over shared wireless channels, the undesirable propagation error inevitably deteriorates the performance of global aggregation. The objective of this work is to 1) reduce the signal distortion of AirComp; 2) enhance the convergence rate of federated learning. Thus, the mean-square-error and the device set are optimized by designing the transmit power, controlling the receive scalar, tuning the phase shifts, and selecting participants in the model uploading process. The formulated mixed-integer non-linear problem (P0) is decomposed into a non-convex problem (P1) with continuous variables and a combinatorial problem (P2) with integer variables. To solve subproblem (P1), the closed-form expressions for transceivers are first derived, then the multi-antenna cases are addressed by the semidefinite relaxation. Next, the problem of phase shifts design is tackled by invoking the penalty-based successive convex approximation method. In terms of subproblem (P2), the difference-of-convex programming is adopted to optimize the device set for convergence acceleration, while satisfying the aggregation error demand. After that, an alternating optimization algorithm is proposed to find a suboptimal solution for problem (P0). Finally, simulation results demonstrate that i) the designed algorithm can converge faster and aggregate model more accurately compared to baselines; ii) the training loss and prediction accuracy of federated learning can be improved significantly with the aid of multiple RISs.