Do you want to publish a course? Click here

Clustering and Power Optimization for NOMA Multi-Objective Problems

64   0   0.0 ( 0 )
 Added by Mylene Pischella Dr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper considers uplink multiple access (MA) transmissions, where the MA technique is adaptively selected between Non Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA). Two types of users, namely Internet of Things (IoT) and enhanced mobile broadband (eMBB) coexist with different metrics to be optimized, energy efficiency (EE) for IoT and spectral efficiency (SE) for eMBB. The corresponding multi-objective power allocation problems aiming at maximizing a weighted sum of EE and SE are solved for both NOMA and OMA. Based on the identification of the best MA strategy, a clustering algorithm is then proposed to maximize the multi-objective metric per cluster as well as NOMA use. The proposed clustering, power allocation and MA selection algorithm is shown to outperform other clustering solutions and non-adaptive MA techniques.



rate research

Read More

500 - Ximing Xie , Fang Fang , 2020
The combination of non-orthogonal multiple access (NOMA) and intelligent reflecting surface (IRS) is an efficient solution to significantly enhance the energy efficiency of the wireless communication system. In this paper, we focus on a downlink multi-cluster NOMA network, where each cluster is supported by one IRS. We aim to minimize the transmit power by jointly optimizing the beamforming, the power allocation and the phase shift of each IRS. The formulated problem is non-convex and challenging to solve due to the coupled variables, i.e., the beamforming vector, the power allocation coefficient and the phase shift matrix. To address this non-convex problem, we propose an alternating optimization based algorithm. Specifically, we divide the primal problem into the two subproblems for beamforming optimization and phase shifting feasiblity, where the two subproblems are solved iteratively. Moreover, to guarantee the feasibility of the beamforming optimization problem, an iterative algorithm is proposed to search the feasible initial points. To reduce the complexity, we also propose a simplified algorithm based on partial exhaustive search for this system model. Simulation results demonstrate that the proposed alternating algorithm can yield a better performance gain than the partial exhaustive search algorithm, OMA-IRS, and NOMA with random IRS phase shift.
178 - Wanli Ni , Xiao Liu , Yuanwei Liu 2020
This paper proposes a novel framework of resource allocation in intelligent reflecting surface (IRS) aided multi-cell non-orthogonal multiple access (NOMA) networks, where a sum-rate maximization problem is formulated. To address this challenging mixed-integer non-linear problem, we decompose it into an optimization problem (P1) with continuous variables and a matching problem (P2) with integer variables. For the non-convex optimization problem (P1), iterative algorithms are proposed for allocating transmit power, designing reflection matrix, and determining decoding order by invoking relaxation methods such as convex upper bound substitution, successive convex approximation and semidefinite relaxation. For the combinational problem (P2), swap matching-based algorithms are proposed to achieve a two-sided exchange-stable state among users, BSs and subchannels. Numerical results are provided for demonstrating that the sum-rate of the NOMA networks is capable of being enhanced with the aid of the IRS.
In order to further exploit the potential of joint multi-antenna radar-communication (RadCom) system, we propose two transmission techniques respectively based on separated and shared antenna deployments. Both techniques are designed to maximize the weighted sum rate (WSR) and the probing power at targets location under average power constraints at the antennas such that the system can simultaneously communicate with downlink users and detect the target within the same frequency band. Based on a Weighted Minimized Mean Square Errors (WMMSE) method, the separated deployment transmission is designed via semidefinite programming (SDP) while the shared deployment problem is solved by majorization-minimization (MM) algorithm. Numerical results show that the shared deployment outperforms the separated deployment in radar beamforming. The tradeoffs between WSR and probing power at target are compared among both proposed transmissions and two practically simpler dual-function implementations i.e., time division and frequency division. Results show that although the separated deployment enables spectrum sharing, it experiences a performance loss compared with frequency division, while the shared deployment outperforms both and surpasses time division in certain conditions.
170 - Xiaopeng Mo , Yuwei Huang , Jie Xu 2019
This letter studies an unmanned aerial vehicle-enabled wireless power transfer system within a radio-map-based robust positioning design.
Multi-access edge computing (MEC) can enhance the computing capability of mobile devices, while non-orthogonal multiple access (NOMA) can provide high data rates. Combining these two strategies can effectively benefit the network with spectrum and energy efficiency. In this paper, we investigate the task delay minimization in multi-user NOMA-MEC networks, where multiple users can offload their tasks simultaneously through the same frequency band. We adopt the partial offloading policy, in which each user can partition its computation task into offloading and locally computing parts. We aim to minimize the task delay among users by optimizing their tasks partition ratios and offloading transmit power. The delay minimization problem is first formulated, and it is shown that it is a nonconvex one. By carefully investigating its structure, we transform the original problem into an equivalent quasi-convex. In this way, a bisection search iterative algorithm is proposed in order to achieve the minimum task delay. To reduce the complexity of the proposed algorithm and evaluate its optimality, we further derive closed-form expressions for the optimal task partition ratio and offloading power for the case of two-user NOMA-MEC networks. Simulations demonstrate the convergence and optimality of the proposed algorithm and the effectiveness of the closed-form analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا