No Arabic abstract
String theory on $AdS_3$ has a solvable single-trace irrelevant deformation that is closely related to $Tbar T$. For one sign of the coupling, it leads to an asymptotically linear dilaton spacetime, and a corresponding Hagedorn spectrum. For the other, the resulting spacetime has a curvature singularity at a finite radial location, and an upper bound on the energies of states. Beyond the singularity, the signature of spacetime is flipped and there is an asymptotically linear dilaton boundary at infinity. We study the properties of black holes and fundamental strings in this spacetime, and find a sensible picture. The singularity does not give rise to a hard ultraviolet wall for excitations -- one must include the region beyond it to understand the theory. The size of black holes diverges as their energy approaches the upper bound, as does the location of the singularity. Fundamental strings pass smoothly through the singularity, but if their energy is above the upper bound, their trajectories are singular. From the point of view of the boundary at infinity, this background can be thought of as a vacuum of Little String Theory which contains a large number of negative strings.
We study non-perturbative quantum aspects of $Tbar{T}$-deformation of a free $O(N)$ vector model by employing the large $N$ limit. It is shown that bound states of the original field appear and inevitably become negative-norm states. In particular, the bound states can be regarded as the states of the conformal mode in a gravitational theory, where the Liouville action is induced with the coefficient proportional to the minus of central charge. To make the theory positive-definite, some modification is required so as to preserve diffeomorphism invariance due to the Faddeev-Popov ghosts with a negative central charge.
It was recently shown that the theory obtained by deforming a general two dimensional conformal theory by the irrelevant operator $Tbar T$ is solvable. In the context of holography, a large class of such theories can be obtained by studying string theory on $AdS_3$. We show that a certain $Tbar T$ deformation of the boundary $CFT_2$ gives rise in the bulk to string theory in a background that interpolates between $AdS_3$ in the IR and a linear dilaton spacetime in the UV, i.e. to a two dimensional vacuum of Little String Theory. This construction provides holographic duals for a large class of vacua of string theory in asymptotically linear dilaton spacetimes, and sheds light on the UV behavior of $Tbar T$ deformed $CFT_2$. It may provide a step towards holography in flat spacetime.
The $Tbar T$ deformation of a conformal field theory has a dual description as a cutoff $AdS_3$ spacetime, at least at the level of pure 3d gravity. We generalize this deformation in such a way that it builds up a patch of bulk $dS_3$ spacetime instead. At each step along the trajectory in the space of $2d$ theories, the theory is deformed by a specific combination of $Tbar T$ and the two-dimensional cosmological constant. This provides a concrete holographic dual for the warped throat on the gravity side of the dS/dS duality, at leading order in large central charge. We also analyze a sequence of excitations of this throat on both sides of the duality, as well as the entanglement entropy. Our results point toward a mechanism for obtaining de Sitter solutions starting from seed conformal field theories with AdS duals.
The quest for extension of holographic correspondence to the case of finite temperature naturally includes Kerr-AdS black holes and their field theory duals. In this paper we study the holography by probing the correspondence with pulsating strings. The case we consider is pulsating strings in the five-dimensional Kerr-AdS space time. First we find particular pulsating string solutions and then semi-classically quantize the theory. For the string with large values of energy, we use the Bohr-Sommerfeld analysis to find the energy of the string as a function of a large quantum number. We obtain the wave function of the problem and thoroughly study the corrections to the energy, which by duality are supposed to give anomalous dimensions of certain operators in the dual gauge theory. The interpretation of results from holographic point of view is not straightforward since the dual theory is at finite temperature. Nevertheless, near or at conformal point the expressions can be thought of as the dispersion relations of stationary states.
The counting of microstates of BPS black-holes on local Calabi-Yau of the form ${mathcal O}(p-2)oplus{mathcal O}(-p) longrightarrow S^2$ is explored by computing the partition function of q-deformed Yang-Mills theory on $S^2$. We obtain, at finite $N$, the instanton expansion of the gauge theory. It can be written exactly as the partition function for U(N) Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. In the large $N$ limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces to the trivial sector and the topological string partition function on the resolved conifold is reproduced in this regime. At a certain critical point, instantons are enhanced and the theory undergoes a phase transition into a strong coupling regime. The transition from the strong coupling phase to the weak coupling phase is of third order.