Do you want to publish a course? Click here

dS/dS and $Tbar T$

186   0   0.0 ( 0 )
 Added by Eva Silverstein
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The $Tbar T$ deformation of a conformal field theory has a dual description as a cutoff $AdS_3$ spacetime, at least at the level of pure 3d gravity. We generalize this deformation in such a way that it builds up a patch of bulk $dS_3$ spacetime instead. At each step along the trajectory in the space of $2d$ theories, the theory is deformed by a specific combination of $Tbar T$ and the two-dimensional cosmological constant. This provides a concrete holographic dual for the warped throat on the gravity side of the dS/dS duality, at leading order in large central charge. We also analyze a sequence of excitations of this throat on both sides of the duality, as well as the entanglement entropy. Our results point toward a mechanism for obtaining de Sitter solutions starting from seed conformal field theories with AdS duals.



rate research

Read More

We initiate a study of subregion dualities, entropy, and redundant encoding of bulk points in holographic theories deformed by $T bar T$ and its generalizations. This includes both cut o
We put forward new explicit realisations of dS/CFT that relate ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The partition function of the free supersymmetric vector model deformed by a range of low spin deformations that preserve supersymmetry appears to specify a well-defined wave function with asymptotic de Sitter boundary conditions in the bulk. In particular we find the wave function is globally peaked at undeformed de Sitter space, with a low amplitude for strong deformations. This suggests that supersymmetric de Sitter space is stable in higher-spin gravity and in particular free from ghosts. We speculate this is a limiting case of the de Sitter realizations in exotic string theories.
In this note we revisit some of the recent 10d and 4d arguments suggesting that uplifting of supersymmetric AdS vacua leads to flattening of the potential, preventing formation of dS vacua. We explain why the corresponding 10d approach is inconclusive and requires considerable modifications. We also show that while the flattening effects may occur for some extreme values of the parameters, they do not prevent the formation of dS vacua within the range of validity of the 4d KKLT models. The KL version of the KKLT scenario based on a racetrack superpotential requires parametrically small uplifting, which is not affected by flattening. We show that this scenario is compatible with the weak gravity conjecture for a broad choice of parameters of the KL model. Thus, the results of our analysis do not support the recent swampland conjecture.
The decays Bs0 --> Ds(*)+ Ds(*)- are reconstructed in a data sample corresponding to an integrated luminosity of 6.8 fb-1 collected by the CDF II detector at the Tevatron pbar{p} collider. All decay modes are observed with a significance of more than 10 sigma, and we measure the Bs0 production rate times Bs0 --> Ds(*)+ Ds(*)- branching ratios relative to the normalization mode B0 --> Ds+ D- to be $0.183 pm 0.021 pm 0.017$ for Bs0 --> Ds+ Ds-, $0.424 pm 0.046 pm 0.035$ for Bs0 --> Ds*+- Ds-+, $0.654 pm 0.072 pm 0.065$ for Bs0 --> Ds*+ Ds*-, and $1.261 pm 0.095 pm 0.112$ for the inclusive decay Bs0 --> Ds(*)+ Ds(*)-, where the uncertainties are statistical and systematic. These results are the most precise single measurements to date and provide important constraints for indirect searches for non-standard model physics in Bs0 mixing.
We describe in more detail the general relation uncovered in our previous work between boundary correlators in de Sitter (dS) and in Euclidean anti-de Sitter (EAdS) space, at any order in perturbation theory. Assuming the Bunch-Davies vacuum at early times, any given diagram contributing to a boundary correlator in dS can be expressed as a linear combination of Witten diagrams for the corresponding process in EAdS, where the relative coefficients are fixed by consistent on-shell factorisation in dS. These coefficients are given by certain sinusoidal factors which account for the change in coefficient of the contact sub-diagrams from EAdS to dS, which we argue encode (perturbative) unitary time evolution in dS. dS boundary correlators with Bunch-Davies initial conditions thus perturbatively have the same singularity structure as their Euclidean AdS counterparts and the identities between them allow to directly import the wealth of techniques, results and understanding from AdS to dS. This includes the Conformal Partial Wave expansion and, by going from single-valued Witten diagrams in EAdS to Lorentzian AdS, the Froissart-Gribov inversion formula. We give a few (among the many possible) applications both at tree and loop level. Such identities between boundary correlators in dS and EAdS are made manifest by the Mellin-Barnes representation of boundary correlators, which we point out is a useful tool in its own right as the analogue of the Fourier transform for the dilatation group. The Mellin-Barnes representation in particular makes manifest factorisation and dispersion formulas for bulk-to-bulk propagators in (EA)dS, which imply Cutkosky cutting rules and dispersion formulas for boundary correlators in (EA)dS. Our results are completely general and in particular apply to any interaction of (integer) spinning fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا