Do you want to publish a course? Click here

Asymptotic commutativity of quantized spaces: the case of $mathbb{CP}^{p,q}$

118   0   0.0 ( 0 )
 Added by Fedele Lizzi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a procedure for quantizing complex projective spaces $mathbb{CP}^{p,q}$, $qge 1$, as well as construct relevant star products on these spaces. The quantization is made unique with the demand that it preserves the full isometry algebra of the metric. Although the isometry algebra, namely $su(p+1,q)$, is preserved by the quantization, the Killing vectors generating these isometries pick up quantum corrections. The quantization procedure is an extension of one applied recently to Euclidean $AdS_2$, where it was found that all quantum corrections to the Killing vectors vanish in the asymptotic limit, in addition to the result that the star product trivializes to pointwise product in the limit. In other words, the space is asymptotically anti-de Sitter making it a possible candidate for the $AdS/CFT$ correspondence principle. In this article, we find indications that the results for quantized Euclidean $AdS_2$ can be extended to quantized $mathbb{CP}^{p,q}$, i.e., noncommutativity is restricted to a limited neighborhood of some origin, and these quantum spaces approach $mathbb{CP}^{p,q}$ in the asymptotic limit.



rate research

Read More

In this paper, we consider a family of $n$-dimensional, higher-curvature theories of gravity whose action is given by a series of dimensionally extended conformal invariants. The latter correspond to higher-order generalizations of the Branson $Q$-curvature, which is an important notion of conformal geometry that has been recently considered in physics in different contexts. The family of theories we study here includes special cases of conformal invariant theories in even dimensions. We study different aspects of these theories and their relation to other higher-curvature theories present in the literature.
We study field theoretical models for cosmic (p,q)-superstrings in a curved space-time. We discuss both string solutions, i.e. solutions with a conical deficit, but also so-called Melvin solutions, which have a completely different asymptotic behaviour. We show that globally regular gravitating (p,q)-strings exist only in a finite domain of the parameter space and study the dependence of the domain of existence on the parameters in the model. We find that due to the interaction between strings, the parameter range where string solution exist is wider than for non-interacting strings.
146 - Ken-ji Hamada 2009
Conformal algebra on R x S^3 derived from quantized gravitational fields is examined. The model we study is a renormalizable quantum theory of gravity in four dimensions described by a combined system of the Weyl action for the traceless tensor mode and the induced Wess-Zumino action managing non-perturbative dynamics of the conformal factor in the metric field. It is shown that the residual diffeomorphism invariance in the radiation^+ gauge is equal to the conformal symmetry, and the conformal transformation preserving the gauge-fixing condition that forms a closed algebra quantum mechanically is given by a combination of naive conformal transformation and a certain field-dependent gauge transformation. The unitarity issue of gravity is discussed in the context of conformal field theory. We construct physical states by solving the conformal invariance condition and calculate their scaling dimensions. It is shown that the conformal symmetry mixes the positive-metric and the negative-metric modes and thus the negative-metric mode does not appear independently as a gauge invariant state at all.
We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space transformations. In particular, we focus on nonrelativistic symmetry algebras that give rise to (torsional) Newton-Cartan geometries, for which we demonstrate how the Newton-Cartan metric complex is determined by degenerate co- and contravariant symmetric bilinear forms on the coset. In specific cases, we also show the connection of the resulting nonrelativistic coset spacetimes to pseudo-Riemannian cosets via Inonu-Wigner contraction of relativistic algebras as well as null reduction. Our construction is of use for example when considering limits of the AdS/CFT correspondence in which nonrelativistic spacetimes appear as gravitational backgrounds for nonrelativistic string or gravity theories.
57 - John F. Donoghue 2019
The present practice of Asymptotic Safety in gravity is in conflict with explicit calculations in low energy quantum gravity. This raises the question of whether the present practice meets the Weinberg condition for Asymptotic Safety. I argue, with examples, that the running of $Lambda$ and $G$ found in Asymptotic Safety are not realized in the real world, with reasons which are relatively simple to understand. A comparison/contrast with quadratic gravity is also given, which suggests a few obstacles that must be overcome before the Lorentzian version of the theory is well behaved. I make a suggestion on how a Lorentzian version of Asymptotic Safety could potentially solve these problems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا