No Arabic abstract
Conformal algebra on R x S^3 derived from quantized gravitational fields is examined. The model we study is a renormalizable quantum theory of gravity in four dimensions described by a combined system of the Weyl action for the traceless tensor mode and the induced Wess-Zumino action managing non-perturbative dynamics of the conformal factor in the metric field. It is shown that the residual diffeomorphism invariance in the radiation^+ gauge is equal to the conformal symmetry, and the conformal transformation preserving the gauge-fixing condition that forms a closed algebra quantum mechanically is given by a combination of naive conformal transformation and a certain field-dependent gauge transformation. The unitarity issue of gravity is discussed in the context of conformal field theory. We construct physical states by solving the conformal invariance condition and calculate their scaling dimensions. It is shown that the conformal symmetry mixes the positive-metric and the negative-metric modes and thus the negative-metric mode does not appear independently as a gauge invariant state at all.
In this paper, we demonstrate the emergence of nonlinear gravitational equations directly from the physics of a broad class of conformal field theories. We consider CFT excited states defined by adding sources for scalar primary or stress tensor operators to the Euclidean path integral defining the vacuum state. For these states, we show that up to second order in the sources, the entanglement entropy for all ball-shaped regions can always be represented geometrically (via the Ryu-Takayanagi formula) by an asymptotically AdS geometry. We show that such a geometry necessarily satisfies Einsteins equations perturbatively up to second order, with a stress energy tensor arising from matter fields associated with the sourced primary operators. We make no assumptions about AdS/CFT duality, so our work serves as both a consistency check for the AdS/CFT correspondence and a direct demonstration that spacetime and gravitational physics can emerge from the description of entanglement in conformal field theories.
We bootstrap loop corrections to AdS${}_5$ supergravity amplitudes by enforcing the consistency of the known classical results with the operator product expansion of $mathcal{N}=4$ super Yang-Mills theory. In particular this yields much new information on the spectrum of double-trace operators which can then be used, in combination with superconformal symmetry and crossing symmetry, to obtain a prediction for the one-loop amplitude for four graviton multiplets in AdS. This in turn yields further new results on subleading $O(1/N^4)$ corrections to certain double-trace anomalous dimensions.
From pure Yang-Mills action for the $SL(5,mathbb{R})$ group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature squared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.
Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter spacetime (AdS) and show that they exist for masses above the Breitenlohner-Freedman (BF) bound. Starting from a regular seed solution of the massive Klein-Gordon equation (KGE), mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.
We analyze conformal gravity in translationally invariant approximation, where the metric is taken to depend on time but not on spatial coordinates. We find that the field mode which in perturbation theory has a ghostlike kinetic term, turns into a tachyon when nonlinear interaction is accounted for. The kinetic term and potential for this mode have opposite signs. Solutions of nonlinear classical equations of motion develop a singularity in finite time determined by the initial conditions.